
vol. 159, no. 2 the american naturalist february 2002

Species-Area Curves, Diversity Indices, and Species

Abundance Distributions: A Multifractal Analysis
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abstract: Although fractals have been applied in ecology for some
time, multifractals have, in contrast, received little attention. In this
article, we apply multifractals to the species-area relationship and
species abundance distributions. We highlight two results: first, spe-
cies abundance distributions collected at different spatial scales may
collapse into a single curve after appropriate renormalization, and
second, the power-law form of the species-area relationship and the
Shannon, Simpson, and Berger-Parker diversity indices belong to a
family of equations relating the species number, species abundance,
and area through the moments of the species abundance–probability
density function. Explicit formulas for these diversity indices, as a
function of area, are derived. Methods to obtain the multifractal
spectra from a data set are discussed, and an example is shown with
data on tree and shrub species collected in a 50-ha plot on Barro
Colorado Island, Panama. Finally, we discuss the implications of the
multifractal formalism to the relationship between species range and
abundance and the relation between the shape of the species abun-
dance distribution and area.

Keywords: species-area relationship, species diversity indices, species
abundance distribution, multifractals, method of moments, method
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One of the best-known patterns in ecology is the power-
law form of the species-area relationship
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zS(A) p cA , (1)

where S(A) is the number of species in a taxonomic group
within area A, and c and z are constants. Such a general
pattern is important not only for fundamental aspects of
ecological theory but also for ecological applications such
as the design of reserves (e.g., Gilpin and Diamond 1980;
Higgs and Usher 1980) and the estimation of species ex-
tinction rates (e.g., May et al. 1995; Pimm et al. 1995).
For a recent comprehensive review of species-area rela-
tionships, see Rosenzweig (1995).

According to Rosenzweig (1995), a species-area rela-
tionship (hereafter SAR) of the form of equation (1) was
first suggested by H. C. Watson in the first half of the
nineteenth century for the vascular plant species of Great
Britain. A similar study with similar conclusions was re-
ported by Arrhenius (1921) for the plant communities of
islands of Stockholm, Sweden. Since then, ecologists have
attempted to derive the power-law SAR from statistical
sampling theories (e.g., Preston 1962; MacArthur and Wil-
son 1967; May 1975; Caswell and Cohen 1993) or dynam-
ical theories (Hubbell 1997, 2001). Preston (1962) and
May (1975) sought to derive the power-law SAR from the
assumption that the species abundance distribution of a
taxonomic group is described by a lognormal distribution.
These authors showed that, under certain assumptions,
the value of the exponent z is approximately equal to 0.25,
a value frequently found for SARs for taxa on islands of
the same archipelago but larger than the values frequently
estimated for nested areas within an island or a continent,
where (e.g., Rosenzweig 1995).z ≈ 0.12

More recently, attention has shifted to simulation stud-
ies, which attempt to elucidate the underlying biological
factors that might determine the shape of SAR curves and
the slopes (z values) that are empirically observed (Durrett
and Levin 1996; Leitner and Rosenzweig 1997; Ney-Nifle
and Mangel 1999; Pelletier 1999; Hubbell 2001). Some of
these studies have challenged Preston’s (1962) and May’s
(1975) findings. Leitner and Rosenzweig (1997) and Pel-
letier (1999) showed that the z values obtained by simu-
lations with only the assumptions used in Preston’s (1962)
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and May’s (1975) theory always substantially exceeded
those predicted by the theory or those empirically ob-
served. In order to obtain z values close to the observed
ones, an extra assumption concerning species range size
and abundance had to be introduced.

Durrett and Levin (1996) and Hubbell (1997, 2001)
took another approach. They assumed that SARs are dy-
namic and reflect a spatial diversity equilibrium among
the ongoing processes of speciation, dispersal, and ex-
tinction on a biogeographic landscape. Durrett and Levin
(1996) showed that z values depend on the speciation rate,
and Hubbell (1997, 2001) showed that they also depend
on the dispersal rate of species over the landscape relative
to the speciation rate.

Instead of trying to derive the power-law form of the
SAR from basic principles, Harte and Kinzig (1997) de-
rived several ecological consequences by simply assuming
that equation (1) holds. In particular, Harte and Kinzig
(1997) pointed out that, as a power law, equation (1)
implies self-similarity in the relation between the number
of species and area. The concept of self-similarity is com-
monly found in the study of fractals, where it is a main
characteristic of some, but not all, fractal objects or signals
(for the application of fractals in ecology, see, e.g., Hastings
and Sugihara 1993). Self-similarity is defined as follows:
given any two areas A1 and A2, as long as the ratio A1/A2

is constant, the ratio of the number of species found in
A1 and A2, S(A1)/S(A2), is constant, independent of the
spatial scale at which the areas are chosen. In other words,
the same pattern is observed at different spatial scales. In
nature, however, self-similarity is expected to be observed
only within a certain intermediate range of areas (Hubbell
2001), not at all spatial scales, as assumed by Harte et al.
(1999). At small spatial scales, the SAR relationship is not
governed by equation (1) but is curvilinear on a log-log
plot, and at large scales, the SAR bends upward toward a
limiting slope of unity (Durrett and Levin 1996; Hubbell
2001).

It is often the case that when a fractal is observed a
more general class of self-similar relations called “multi-
fractals” (to be defined later) also exists (e.g., Mandelbrot
and Evertsz 1996). In contrast to a fractal object, or signal,
where a single number (called its “dimension”) is sufficient
for complete characterization, a multifractal requires an
infinite number of indices, frequently called “a spectrum.”
Multifractals are mainly a probabilistic concept. Two main
methodological approaches have dominated the study of
multifractals (Evertsz and Mandelbrot 1992). One focuses
on the moments of the underlying distribution function
(the method of moments) and the other on the distri-
bution function directly (the histogram method). (For ex-
amples of application of multifractals in ecology, see, e.g.,
Pascual et al. 1995 and Manrubia and Solé 1996.)

In this article, we apply the multifractal approach to
studying SARs. We assume a spatial scale on which the
power-law SAR relationship applies. Adopting the mul-
tifractal approach allows us to extend the theory of SARs
beyond the simple description of species richness in a given
area to include relative species abundance as well. We be-
lieve that the generalization of the power law of the SAR
using the multifractal formalism is potentially far reaching.
First, it ties species-area theory to a number of indices
used widely to quantify diversity. Second, it generates a
number of new hypotheses about patterns of biodiversity
for further investigation. Third, it develops new tools for
addressing practical issues such as conservation. The un-
covering of deeper biodiversity patterns so far unobserved
is, in our opinion, one of the main contributions of this
article.

We highlight the following predictions and conse-
quences of the multifractal formalism. The method of mo-
ments and the histogram method yield different aspects
of the theory. First, the method of moments leads to
power-law functional relationships between area and the
Shannon, Simpson, and Berger-Parker diversity indices
(Magurran 1988). To our knowledge, this is the first time
that explicit relations between these diversity indices and
area have been put forward. The method of moments also
reveals a relationship between the fraction of individuals
of a species and area, which is compatible with a widely
observed pattern, namely, that very abundant species are
widespread and rare species have smaller ranges (e.g.,
Brown 1984; Gaston et al. 1997; Hubbell 2001). Second,
the histogram method allows us to study the species abun-
dance as well and, in particular, to study the spatial evo-
lution of the relative species abundance distribution. The
histogram method shows that under the power-law SAR,
the species abundance distributions, after an appropriate
renormalization, converge to a limiting curve when area
increases. The latter is probably the most important con-
sequence of the application of multifractals to theoretical
and practical studies.

Because multifractals are poorly known in ecology, the
next section briefly reviews the main results of multifractal
theory. We start with a simple example concerning the
estimation of the multifractal spectrum of a set of points
in a surface, a typical example of application of multi-
fractals (e.g., Cheng and Agterberg 1995). The connection
with the SAR is then established by analyzing the role of
the quantities in the equation determining the fractal di-
mension and the power-law form of the SAR (eq. [1]).
The method of moments is then developed specifically in
the context of analyzing the species abundance distribu-
tion, followed by the histogram method. However, the
order is interchangeable, and the reader may prefer to
begin with the histogram method. We give the basic al-
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Figure 1: Example of application of the box-counting method; a, set of points in a square plot; b, squares required to cover all the points

gorithms for estimating the multifractal spectrum from
raw data for both methods. Data collected for a given taxon
with information on location, number, and species of in-
dividuals are suitable to the application of these methods.
To exemplify the application of multifractal methods, we
use data on the tree composition of a 50-ha tropical forest
plot of Barro Colorado Island, Panama. The last section
discusses the relevance of multifractal analysis for ecolog-
ical theory in general and practical conservation issues.

The Theory of Multifractals

The theory of multifractals, as applied to patterns of rel-
ative species abundance, can take two methodological ap-
proaches. One is to construct histograms of frequency of
species having a given abundance. Preston’s species abun-
dance curves are an example (e.g., Preston 1948, 1962;
MacArthur and Wilson 1967; Nee et al. 1991). Another is
to describe the distribution of the relative species abun-
dance directly in terms of the moments of the sample
distribution. These two approaches lead to two different
methods of determining the multifractal spectrum: the
method of histograms and the method of moments (Ev-
ertsz and Mandelbrot 1992), respectively. Each of these
methods imposes different necessary and sufficient criteria
for a distribution to be multifractal; the method of mo-
ments is more stringent, and distributions that pass the
criterion of this method will be called “restricted multi-
fractal distributions.” We first explain in detail the method
of moments, followed by the histogram method, before
considering a practical example.

The Method of Moments

Fractal Dimensions and SARs. One of the most popular
techniques used in conjunction with the method of mo-
ments is the so-called box-counting algorithm. An example
of application of this method in ecology (only for fractal
sets, not multifractals) is given by Morse et al. (1985). The
method consists of covering an object with a set of boxes
(squares, if the object is embedded in a two dimensional
space) of linear size � and counting how many boxes con-
tain at least one point. Call the number of occupied boxes
N(�). Figure 1 exemplifies the box-counting method for
a set of points in a plane. Figure 1b shows the boxes with
a certain size � required to cover the set of points of figure
1a. The same procedure is then repeated for boxes with
different sizes. If an object is a fractal, then a dimension
D0 (the reason for the subscript will be made clear soon),
called the “box-counting dimension,” is formally defined
as

log (N(�))
D p lim � . (2)0 log (�)�r0

In real applications, for obvious reasons, the limit cannot
be attained, and instead, we require only that within a
certain range of values of �, called the “scaling region,”
the number of boxes follows a power law such that

�D0N(�) ∝ � . (3)

In practice, log-log plots are used, and the scaling region
is defined as the range where a straight line is observed.
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The fractal dimension is estimated as the slope of this line.
A caveat is in order at this point: there are no theoretically
defined rules to determine the scaling region or regions if
more than one is identified. Except for some mathemat-
ically constructed deterministic fractals, in general, the
scaling region must be empirically determined. This sit-
uation is not unlike the choice of the scaling region where
a SAR follows, approximately, a linear relation in a log-
log plot.

We can easily establish how the power-law form of the
SAR (eq. [1]) is related to the estimation of the fractal
dimension (eq. [3]) since they are both power laws. If
equation (1) is written in the form

�z

1
S(A) ∝ ,( )A

then the number of species, S(A), plays the same role as
the total number of boxes, N(�), with 1/A as �, and z as
D0.

The Partition Function and the Spectrum of Generalized
Exponents. So far, only the presence or absence of points
in a box has mattered; information on the relative number
of points inside each box has not been used. For some
fractals, called “homogeneous fractals,” or “monofractals,”
all boxes contain the same number of points. For other
fractals, called “heterogeneous fractals,” or “multifractals,”
the number of points inside boxes are different, and the
relative point abundances among boxes have distributional
scaling properties with � that are themselves self-similar
on different spatial scales.

In order to characterize a multifractal using the method
of moments, the so-called partition function, xq, is defined
as

N(�)

qx (�) p p , (4)�q i
ip1

where pi is the proportion of the points falling inside box
i and q is a chosen (positive or negative) real number. To
understand the origin of the designation “method of mo-
ments,” observe that equation (4) can also be written as

pmax

qx (�) p p F(p ). (5)�q j j
jppmin

Equation (4) is summed over the set of all individual boxes,
whereas equation (5) is summed over categories of abun-
dance p, and F(pj) is the frequency of boxes with abun-
dance pj. Notice that xq(�)/N(�) corresponds to the def-
inition of the q th moment of the F(pj). Clearly, the

numerical value of the sum in equations (4) and (5) de-
pends on the size of the exponent q; that is, they depend
on which moment is selected.

The importance of q, among other things, is that dif-
ferent values of this variable allow the theory to generate
many of the well-known indices of diversity, as we will
demonstrate below. Mathematically, the variable q deter-
mines the sensitivity of equations (4) or (5) to high- or
low-abundance boxes. That is, depending on the choice
of q, boxes with different pi give different contributions
to the sum in equation (4) or (5). When q is a large positive
number, the main contribution to the sum comes from
the largest pi, and the term corresponding to the smallest
pi is negligible. However, when q is a very small negative
number (large in absolute value), for large pi becomesqpi

negligible relative to the contribution of the smallest pi.
The following example illustrates the role of q. Imagine
that there are only two pi, and . Ifp p 0.75 p p 0.251 2

, and ; that is, the�10 �10q p �10 p p 17.76 p p 1,048,5761 2

contribution of p1 is negligible. Conversely, if ,q p 10
and , it is now the contri-10 10 �7p p 0.056 p p 9.54 # 101 2

bution of p2 that can be neglected.
A description of a multifractal is obtained by defining

the generalized (box-counting) dimensions, also called
“Rényi dimensions” (e.g., Grassberger 1983):

N(�)
qlog � pi( )ip11 1 log (x )qD p lim p lim . (6)q q � 1 log (�) q � 1 log (�)�r0 �r0

The spectrum of generalized dimensions, Dq, has a sig-
moidal-shaped curve and is a monotonically decreasing
function of q (e.g., Grassberger 1983). Recalling the pre-
vious discussion on the role of q, we note that Dq reflects
the characteristics of the less dense regions of the set of
points when , and it reflects the denser regions whenq ! 0

.q 1 0
Returning to the power-law form of the SAR, we define

a partition function, xq(A), in terms of the relative number
of individuals of a given species i; , where ni isp p n /Ni i

the number of individuals of species i, and N is the total
number of individuals of all species:

S(A)

qx (A) p p . (7)�q i
ip1

The sum is now performed over all the species, S(A),
within area A. Making use of the previous analogy between
1/A and � and S(A) and N(�), we introduce an equation
equivalent to equation (6) that we call the spectrum of
generalized exponents:
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S(A)
qlog � pi( )ip11

z p lim ,q q � 1 log (1/A)Ar�

or

S(A)
qlog � pi( )ip11 1 log (x )qz p lim p lim . (8)q 1 � q log (A) 1 � q log (A)Ar� Ar�

In the same way the Dq spectrum characterized a mul-
tifractal object, the zq spectrum characterizes a multifractal
species abundance distribution. The observations previ-
ously made about the shape of the Dq spectrum and the
role of the parameter q also apply to the zq spectrum: zq

has a sigmoidal shape, and it is a monotonically decreasing
function of q. When q is a large positive number, the most
abundant species are selected, and when it is a small neg-
ative number, the rarest species are selected. The signifi-
cance of the values of zq for the scaling of pi with A will
be discussed in detail later.

In practical situations, clearly, the limit in equa-A r �
tion (8) cannot be attained. In order to determine zq, one
should investigate whether plots of versusqS(A)log (� p )ip1 i

for several values of q are straight lines within alog (A)
certain range of area A. (Note: is a special case thatq p 1
we will discuss later.) In other words, power-law relations
should be observed not only for the relation between the
number of species and A but also for the moments of the
relative abundance of species and A. We stress the im-
portance of choosing the upper and lower limits of the
scaling region carefully because power laws may not be a
good description for all spatial scales or more than one
scaling region may be present.

The zq Spectrum and Species Diversity Indices. As previously
mentioned, the methods of moments lead to functional
relations between some well-known diversity indices and
area A. These can be obtained from equation (8) for se-
lected values of q. Formulas for , 1, 2 and the limitingq p 0
cases are given explicitly below.q r ��

When , the familiar power-law form of the SARq p 0
is recovered:

log (S(A))
z p lim . (9)0 log (A)Ar�

For , equation (8) cannot be solved since the de-q p 1
nominator becomes 0. The solution is to take the limit

and apply the l’Hôpital rule. The result isq r 1

S(A)

� � p log (p )i i
ip1z p lim , (10)1 log (A)Ar�

where the Shannon’s index can be recognized in the
numerator.

For , one obtains, by simple substitution of q byq p 2
2,

S(A)
2log � pi( )ip1

z p � lim , (11)2 log (A)Ar�

where the numerator corresponds to the logarithm of the
Simpson’s index.

In the limiting case , the sum in equation (8) isq r �
dominated by the largest value of p, , then becomingpmax

log (p )maxz p � lim , (12)� log (A)Ar�

where is the Berger-Parker index (e.g., Magurranpmax

1988).
Contrarily, for , the sum is dominated by theq r ��

smaller p, , and one obtainspmin

log (p )minz p � lim . (13)�� log (A)Ar�

Hill (1973) noted that some of these indices could be
derived from a single formula, the generalized entropy of
order q, first introduced by Rényi (1961), which is, in fact,
the term

S(A)
1

qlog p� i( )1 � q ip1

in equation (8). What is discovered here is that equations
(10)–(12) indicate that a functional relation with area ex-
ists for the Shannon, the Simpson, and the Berger-Parker
indices. Specifically, equation (10) implies that when the
Shannon index is plotted as a function of , a straightlog (A)
line with slope z1 is obtained, and equations (11) and (12)
imply that the Simpson and the Berger-Parker indices ex-
hibit a power-law relationship with the area such as �z2A
and , respectively; that is, when plotted as a function�z��A
of A in a log-log plot, straight lines with slopes �z 2 and
�z�� are observed.

Some Extreme Cases. Analysis of equation (8) in some
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special cases leads to the extreme values of z0 and clarifies
the interpretation of z 0. Suppose all species are equally
abundant, each with the same number of individuals, such
that for a given area, all pi is constant. In this case, the
sum in equation (8) reduces to S(A)(1�q) and

log (S(A))
z p z p lim ,q 0 log (A)Ar�

that is, the zq are all the same and independent of q (this
is the equivalent to a homogeneous fractal).

Consider now two extreme situations that lead to dif-
ferent and extreme values of z 0. Species may or may not
have the same number of individuals. First, all species are
spatially, perfectly, and uniformly distributed. In this case,
one can define a minimum area, Am, within which all
species are represented by at least one individual. Then,
for any area larger than Am, no more new species will be
found, which implies a constant value for S. Since z0 is
defined in the limit of , this situation impliesA r �

. In the second extreme case, each species is foundz p 00

only in one contiguous region. Assume also that each spe-
cies occupies the same area. If this is the minimum area
of sampling, the number of species, S, will increase linearly
with A, then . The latter situation corresponds toz p 10

a case of complete spatial independence of regional bio-
geographical processes (Durrett and Levin 1996).

Observe that, in these two extreme cases, there were no
restrictions on the shape of the distribution of species
abundance, which shows that the same distribution may
imply different values of z, depending on the spatial dis-
tribution of species over the landscape or that different
species abundance distributions may lead to the same value
of z. This seems to contradict the argument of Harte et
al. (1999) who derive a one-to-one functional mapping
between z and a unique species abundance distribution of
a given region. This happened because, at the smallest
scale, the species distribution was always the same, al-
though, in the same article, Harte et al. (1999) make some
provisions for the cases where the power-law relationship
breaks down, in particular, for small areas. In practical
situations, the limit of validity of the power-law SAR is
restricted to a certain range of areas, and a different species
distribution at the lower limit of the of the SAR power-
law region may lead to different species distributions at
larger areas even if the same exponent z is observed.

An Algorithm for the Method of Moments. A basic iterative
process to obtain zq from raw data, which consists of the
relative species abundance of a given taxon within a certain
area.

Step 1. For a given area, A, compute the partition func-
tion xq(A) (eq. [7]).

Step 2. Repeat the previous step for areas of different
sizes.

Step 3. Plot versus for different valueslog (x ) log (A)q

of q, and check whether the lines are straight.
Step 4. If the lines are straight, then compute the slope

tq; zq is obtained from . As discussed before,z p t /(1 � q)q q

is a special case, and instead of the partition func-q p 1
tion, take versus .S(A)�� p log (p ) log (A)ip1 i i

The following very simple example shows explicitly the
numerical steps to obtain the zq spectrum. Consider two
areas, and , such that (arbitraryA A A p 2A p 201 2 2 1

units). Area has five species from a given taxon with aA1

total number of individuals, , distributed by spe-N p 105T

cies as , 3, 25, 26, 50). Area contains the previousn p (1 A 2

species plus a new one and , distributed by speciesN p 210T

as , 5, 48, 50, 98, 8). For area ,n p (1 A p p n /N p1 i i T

, and for ,(0.0095, 0.0286, 0.238, 0.248, 0.476) A p p2 i

. For the sake of(0.0048,0.0238, 0.228, 0.238, 0.467, 0.038)
simplicity, we consider only and 2. For ,q p �2 q p �2
the value of the partition function obtained from application
of equation (7) is andx (A ) p 12,288.36 x (A ) p�2 1 �2 2

, or and46,594.43 log (x (A )) p 4.089 log (x (A )) p�2 1 �2 2

. For , and4.668 q p 2 x (A ) p 0.34567 x (A ) p2 1 2 2

, or and0.32875 log (x (A )) p �0.4613 log (x (A )) p2 1 2 2

; these calculations correspond to steps 1 and 2. In�0.4831
a real situation, where more areas are sampled, step 3 re-
quires a check of the linearity of versus . Inlog (x ) log (A)q

our simple example, the slopes of versus arelog (x ) log (A)q

and and from equation (8),t p 1.92 t p �0.07�2 2

and . Application of these steps forz p 0.64 z p 0.07�2 2

more values of q would allow us to draw the spectrum of
generalized exponents, zq.

Step 3 suggests a definition of a multifractal distribution:
a distribution is called “multifractal” if power-law rela-
tionships of xq(A) exist for all q. This is the crucial aspect
of the method of moments. If the lines are not straight,
then the method is not applicable. However, even if the
lines are not straight for all values of q, the distribution
may still be self-similar. Mandelbrot and Evertsz (1996)
showed that there are exactly self-similar distributions for
which the method of moments fails to apply. Two situa-
tions were identified: straight lines are not observed for
negative q’s below a certain or for positive q’s aboveqbottom

a certain . The former case occurs when, for some i,q top

tends to 0 with A faster than any power law, and theqpi

latter occurs when tends to 0 with A slower than anyqpi

negative power law, A�a (see Mandelbrot and Evertsz 1996
for details). Self-similar distributions to which the method
of moments can be applied are called “restricted multi-
fractals” to distinguish them from a more general class of
multifractal distributions for which not all moments exist.
In the cases where the method of moments cannot be
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applied, one has to resort to the histogram method (Man-
delbrot and Evertsz 1996).

The Histogram Method

The histogram method, also called the “method of distri-
butions” (Mandelbrot and Evertsz 1996), is an alternative
to the method of moments of characterizing a multifractal
distribution. This method deals directly with the distri-
bution function, instead of the moments, so we can still,
in principle, estimate the multifractal spectrum in cases
where the method of moments fails. The method starts
by constructing histograms of the relative species abun-
dance distribution for areas of different size, followed by
some appropriate transformations, as described below. For
the reader interested in more detailed theoretical expla-
nations of this method, the reviews by Evertsz and Man-
delbrot (1992) and Mandelbrot and Evertsz (1996) are
highly recommended.

The Spectrum of Scaling Indices, f(a). While the method
of moments led to the zq spectrum, the histogram method
leads to the spectrum of scaling indices, f(a). In the prac-
tical situations dealt with in this article, a is the so-called
coarse Hölder exponent, or simply Hölder exponent, and
plays a central role in this method. It is defined as

log (p )i
a p � , (14)i log (A)

where pi is, as before, the relative abundance of species i.
Since pi is smaller than 1, and we are interested in the
limit , the negative sign guarantees that a is aA r ��
positive number. Observe that the largest value of a,

, is achieved when , which corresponds toa p p pmax i min

the rarest species, and conversely, the smallest a, , isamin

obtained when , the most abundant species; no-p p pi max

tice that comparison of equation (14) with equations (12)
and (13) allows us to conclude that, in the limit of very
large areas, and .a p z a p zmax �� min ��

To obtain the f(a) spectrum, the first step consists of
determining, for a given area, A, how many species, Sa,
have the same Hölder exponent, a. These values are then
grouped into “bins” to produce a histogram. The curves
of Sa versus a are very similar to the Preston species abun-
dance curves. The main difference between the Sa curves
and Preston curves is that the logarithms are of the frac-
tional relative abundance on the X-axis, further normal-
ized by area, that is, divided by , accordinglog (p ) log (A)i

to equation (14).
We are interested in the limit when . Clearly,A r ��

one expects Sa(A) to be different when area A increases.

As typically occurs in the study of fractals, we are interested
in an intrinsic characteristic that remains constant inde-
pendently of the independent variable, in this case area A.
That characteristic can be found by rescaling or re-
normalizing to prevent the limit to diverge. In this article,
we explore a renormalization of the form f (a) pA

(Evertsz and Mandelbrot 1992). Thelog (S (A))/ log (A)a

spectrum of the scaling indices, f(a), is then defined as

log (S (A))af(a) p lim . (15)
log (A)Ar�

This renormalization and the existence of the limit in
equation (15), which we stated here without proof, are
consequences of the Harald Cramér theorem on large de-
viations (see Evertsz and Mandelbrot 1992 for details).

Once again, the limit cannot be found, but we can ob-
serve the preasymptotic behavior of equation (15) as area
becomes larger. Mandelbrot and Evertsz (1996) call these
curves “preasymptotic fA(a)” in order to distinguish from
f(a), which is the limiting curve. If the f A(a) curves col-
lapse into a single one, f(a), then the distribution is said
to be multifractal.

Often, the shape of the f(a) spectrum is similar to the
mathematical symbol ∩ (see appendix), where the minima
correspond to the values of and ), and pos-f(a ) f(amin max

sibly lean to one side. In some cases, however, the portion
of the f(a) spectrum to the right of the maximum is a
straight line with a constant value equal to andf (a)max

. In this case, because the left side of the spec-a p ��max

trum has the same shape as before, the multifractal dis-
tribution is called a “left-sided multifractal” (Mandelbrot
and Evertsz 1996). For such multifractals, the moments
are not defined for (one of the situations,q ! q ! 0bottom

previously mentioned, where the method of moments
fails). This fact has led some authors to call these multi-
fractals “anomalous multifractals” (e.g., Paladin and Vul-
piani 1987). Another anomalous-situation case occurs
when . In this case, the overall shape is still likea p 0min

∩, but the spectrum reaches . When thisf (a) a p 0max

happens, the moments are not defined for ,q ! q ! 0top

and again, the method of moments cannot be applied, as
already pointed out (Mandelbrot and Evertsz 1996).

The Relation between the f(a) and the zq Spectrum. When
the moments of the distribution function exist, the zq and
the f(a) spectra can be related. In this case, the calculation
of f(a) is easier with the method of moments, and the
relation of zq and f(a) can be established through a Le-
gendre transformation. The derivation of the formulas re-
lating the two spectra is well known (Halsey et al. 1986)
and is shown for this study in the appendix. The Legendre
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Figure 2: a, Species-area relationship. The area of the left-most point is
m2; the area of the second left-most point is(1 # 1) # 25 (5 # 5) # 25

m2; the area of the of the third left-most point is m2, etc. b,(9 # 9) # 25
SAR plotted in logarithmic scales. c, Derivative of the curve in b obtained
by the central-difference method.

transformation is given by the following pair of equations:

f(a(q)) p (1 � q)z � qa(q), (16a)q

dzq
a(q) p z � (1 � q) , (16b)p dq

where a(q) is the value of a corresponding to the pi that
gives the main contribution to the partition function, xq,
for a selected value of q.

An Algorithm for the Histogram Method. The basic steps
to compute the f(a) spectrum from a data set are as fol-
lows:

Step 1. For a given area A, determine for each species
the Hölder exponent, as defined by equation (14).

Step 2. Divide the range of a into equal bins, Da, and
count the number of occurrences (species) in each bin,
Sb ; the correspondent Sa is equal to Sb /Da.

Step 3. Draw the histogram of versuslog (S )/ log (A)a

, the fA(a) curve.log (a)
Step 4. Repeat the previous steps for areas of different

sizes, A. If the distribution is multifractal, then the curves
of versus should collapse into alog (S )/ log (A) log (a)a

single curve when .A r �
As with the method of moments, we show the appli-

cation of the histogram method to the same numerical
example. Once the pi are calculated, a can be calculated
using equation (14). For A1, , 1.54, 0.62,a(A ) p (2.021

0.61, 0.32), and for A2, , 1.25, 0.49, 0.48,a(A ) p (1.782

0.254, 1.09). If , and if we take nine bins, thenDa p 0.25
for A1, the number of species, Sb, in bin ]0.25, 0.5] is one,
in bin ]0.5, 0.75] is two, in bin ]1.5, 1.75] is one, and in
bin ]2.0, 2.25] is one. For , the number of species inA 2

bin ]0.25, 0.5] is three, in bin ]1.0, 1.25] is two, and in
bin ]1.75, 2.0] is one. Finally, calculating , forS p S /Daa b

A1, , the number of species in binf (a) p log (S )/ log (A )A a 1

]0.25, 0.5] is 0.602, in bin ]0.5, 0.75] is 0.903, in bin ]1.5,
1.75] is 0.602, and in bin ]2.0, 2.25] is 0.602. For ,A 2

, the number of species in binf (a) p log (S )/ log (A )A a 1

]0.25, 0.5] is 1.079, in bin ]1.0, 1.25] is 0.903, and in bin
]1.75, 2.0] is 0.602.

The convergence to a limiting curve, as required by step
4, is the counterpart of the power-law scaling required in
the method of moments (step 3). According to Evertsz
and Mandelbrot (1992, p. 942), the method of moments
converges faster because the calculation of the moments
tends to smooth the data, whereas the histogram method
deals with the raw data. Although the histogram is more
generally applicable, the convergence to f(a) can be ex-
tremely slow. On the other hand, the method of moments
is not of general applicability because the moments may

fail to have power-law behavior as a function of area.
However, when it can be used, it leads to a faster con-
vergence than the method of histograms, and the zq spec-
trum is related to the f(a) spectrum through a Legendre
transformation (eqq. [16]).

Sample Application of Multifractals

Study Site and Methods

We illustrate the application of the method of moments
and of the histogram method to a data set on tree
and shrub species in a rectangular, 50-ha plot (1,000

m2) of old-growth tropical moist forest on Barro2m # 500
Colorado Island (BCI), Panama (Condit et al. 1992). The
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Figure 3a: as a function of the for some integer values oflog (X ) log (A) q ≤ 0q

BCI data set contains information on the spatial coordi-
nates and diameter at breast height (dbh) of all woody
plants (with exception of lianas) with stem diameter ≥ 1
cm dbh, collected in five different census (1982, 1985,
1990, 1995, 2000). For the purposes of this article, we
present results for only the 1982 census since results were
similar for all the other censuses. The 1982 data set con-
tains records on 305 species and about 235,000 individual
stems.

Previously, Manrubia and Solé (1996) and Solé and
Manrubia (1995a, 1995b) have applied multifractals to the
analysis of the 50-ha-plot BCI data, but their work con-
cerned a different topic—the spatial distribution of gaps.
Here, we deal with data on species composition and rel-
ative abundance.

In the previous section, we indicated that the method
of moments is not always applicable, but when it is, con-
vergence tends to be faster than with the histogram
method, which is then preferable. For this reason, we first
analyze the data using the method of moments.

Recall that the method of moments directly leads to the
spectrum of generalized exponents, zq (eq. [8]). In order
to determine the number of species, S(A), and their relative
abundance, pi, for different area sizes, A, we used a pro-
cedure suggested by Rosenzweig (1995, p. 9) to determine
the SAR. First, divide the 50-ha plot into smaller, non-
overlapping squared subplots; the largest subplot is

m 2 and the smallest is m 2. All2 2500 m # 500 20 m # 20
subplots have the same (square) shape. For each subplot
of area A, the number of species, S(A), and their relative
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Figure 3b: Same for some integer values of q ≥ 1

abundances, pi, were determined, and from these, the par-
tition function (eq. 7) was calculated. WeqS(A)x p � pip1q i

then averaged the values of xq of all the subplots with the
same area (see Mandelbrot [1988] for a discussion of the
implications of the averaging process). This means that
equation (8) should be instead rewritten as

S(A)
qlog G� p Hi( )ip11

z p lim , (17)q 1 � q log (A)Ar�

where the angle brackets denote average.

Statistical Issues

Before proceeding further, a statistical caveat is necessary.
The method adopted here is one that uses nested sample
areas; that is, data collected in smaller-area samples also
contribute to the larger-area samples (Leitner and Rosen-
zweig 1997). This implies that data from different samples
are not independent. In fact, even if the nested design had
been avoided, the data might still exhibit some spatial
dependence (spatial autocorrelation) because, on average,
we would expect quadrates that are closer together to be
more similar than ones further apart (Palmer and White
1994). The method of moments requires fitting straight
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lines to these data. This is usually done using least squares
regression methods (e.g., Morse et al. 1985; Cheng and
Agterberg 1995), and we have followed this convention
here. However, it should be noted that the lack of inde-
pendence in the data violates the usual assumptions un-
derlying linear regression. Therefore, we use the coefficient
of determination, R2, as simply a descriptive measure of
goodness of fit. The coefficient R2 can be calculated as

2ˆ� (Y � Y )i i2R p 1 � ,
2� (Y � Y )i i

where the numerator is the sum of squared deviations from
the fitted model, and the denominator is the sum of
squared deviations from the mean.

The SAR of the BCI 50-ha Plot

Returning to the estimation of the zq spectrum, a necessary
though not sufficient condition for a species abundance
distribution to be multifractal is that the SAR is reasonably
described by a power law. This can be verified by plotting
the SAR on a log-log plot and observing whether it is
approximately a straight line within a range of areas (the
scaling region). Over all spatial scales, the SAR is actually
triphasic (Rosenzweig 1995; Hubbell 2001). For small ar-
eas, the SAR is a decelerating curve on a log-log plot; that
is, it has a negative second derivative; for intermediate
values of area, it is approximately a straight line; that is,
a power law is a good approximation; and for large areas,
a new power law with a higher value of z is observed,
approaching a slope of unity at very large spatial scales.
The triphasic nature of these curves has been explained
by Hubbell (1997, 2001) as follows. On local spatial scales,
the species accumulation curve is very sensitive to relative
species abundance: common species are collected quickly,
and then rarer species are added more slowly. On inter-
mediate spatial scales, a log-log linear region arises from
the sampling of species ranges at equilibrium between spe-
ciation, dispersal, and extinction over the biogeographic
region. At very large scales, the correlation length of the
geographic processes is exceeded, beyond which sampling
of regions with independent evolutionary and biogeo-
graphic histories occurs. Durrett and Levin (1996) predict
a limiting slope of unity as the large-area sample units
become dynamically uncoupled and independent. Thus,
the intermediate and large areas correspond to two dif-
ferent scaling regions. An important point needs to be
made here: the existence of different scaling regions should
not be confused with multifractality. If more than one
scaling region is observed, then each of these regions may
hold a distinct multifractal distribution.

The SAR curve is plotted in figure 2a and 2b on both
linear and logarithmic scales, respectively, for the BCI data
census of 1982 using all individuals larger than 1 cm dbh.
Visual inspection of the curve of figure 2b reveals that it
is slightly curved downward, a result already reported by
Condit et al. (1996) and in agreement with the previous
discussion on the shape of the SAR for small areas. What
remains to be investigated is whether for larger areas a
power law is a good approximation for the SAR of the
BCI tree community.

As mentioned, there are no theoretical methods to spec-
ify the limits of the scaling region. In order to determine
whether the curve of figure 2b is approximately straight
in some region of the range of areas available in the 50-
ha plot, that is, whether a scaling region exists, the deriv-
ative of this curve was calculated by the central-difference
method. The justification of this procedure is as follows:
if there is a region of the plane where the curve is ap-
proximately linear, then the derivative should be approx-
imately constant in that region. Results are shown in figure
2c : for small values of A, the slope decreases, indicating
that for these values of A, a power law is not a reasonable
approximation for the SAR. However, for ha, theA ≥ 1
slope of the majority of the points falls between 0.1 and
0.2. Linear regression of the points above 1 ha gave a value
of , , indicating that the SAR is well2z p 0.136 R p 0.9940

approximated by a power law. The ratio of the largest area,
25 ha, to the smallest area, 1 ha, is slightly above one order
of magnitude.

The Method of Moments

Once a scaling region has been identified the method of
moments requires the determination of the curves of

versus or versusqS(A) S(A)log (A� p S) log (A) A� p log (p )Sip1 ip1i i i

for , within the same range of areas used tolog (A) q p 1
estimate z0. Values of q between were used�7 ! q ! 7
because, for very large positive or very small negative q,
values of become too extreme in size to be handled byqpi

the computer. These curves are shown in figure 3a for
integer values of and in figure 3b for . Theq ≤ 0 q ≥ 1
slopes, tq, calculated by least squares, are shown in table
1, together with the respective R2. As can be observed, very
good fits were obtained for , but the fit suddenlyq ! 1
deteriorates for . The spectrum of the generalizedq 1 1
exponents, , is shown in figure 4. Notice thatz p (1 � q)tq q

for approximately , increases, contrary to theoret-q 1 1 zq

ical predictions, which assert that zq should be a mono-
tonically decreasing function of q. The anomalous increase
in the zq spectrum turned out to be very persistent in the
BCI case, even when other techniques were considered. It
did not disappear when the curves were interpolated by
nonlinear (quadratic) regression or when subplots of dif-
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Table 1: Slopes (tq), respective generalized exponent (zq), and
coefficients of determination (R2) for integer values of q

q tq zq R2

�7 6.808 .851 .999
�6 5.826 .832 .999
�5 4.842 .807 .999
�4 3.854 .770 .999
�3 2.860 .714 .998
�2 1.858 .619 .997
�1 .861 .430 .996
0 .136 .136 .988
1 �.012 .048 .788
2 �.033 .033 .421
3 �.082 .041 .450
4 �.159 .053 .515
5 �.260 .065 .564
6 �.381 .076 .600
7 �.520 .086 .626

Note: Data obtained from the 1982 BCI census.

ferent areas were spatially arranged so that they were not
nested.

These results are intriguing. One possible explanation
is that zq is not defined for since it is for this rangeq 1 1
of q that the fit is worse, a situation that would occur if
the relative abundance of at least one species decays to
zero as a function of area slower than any negative power
law (as discussed in the previous section). If this is the
case, then it is likely that similar results will be found for
other data on trees and shrubs collected in 50-ha plots in
other tropical forests. However, we think it is premature
to conclude much about the characteristics of the multi-
fractal spectrum because of the small range of areas A
(only approximately one order of magnitude). It is possible
that if data from larger areas were available, the trend
observed in Dq for positive q would have been reversed.
It is also possible that if plants with dbh smaller than 1
cm had been sampled the results would have been differ-
ent. However, it is worth mentioning that the qualitative
shape of the species abundance distributions for the BCI
plot are largely invariant with changes in cutoff diameter
of the census. For example, they are very similar with larger
cutoff diameters; published distributions for 10- and 20-
cm-dbh-size class cutoffs for the BCI plot can be found
in Hubbell (2001) and in Hubbell and Foster (1983),
showing the qualitative invariance of the curves. We do
not know what the distributions would be if all seedlings
and saplings !1 cm were included. However, the census
of all plants 120 cm dbh in 20,000 one-square-seedling
quadrates over the entire 50-ha plot is currently being
carried, which should give us a better estimate of the curve
for the entire plant community.

The Histogram Method

We now illustrate the application of the histogram method
with the renormalization given by equation (15). The his-
togram method converges slowly, given the small range of
the scaling region on BCI, so it is unlikely that the collapse
of the preasymptotic fA(a) curves into a single curve will
be observed. Nevertheless, because the histogram method
makes use of the full distribution function for each value
of A, it has the merit of showing the preasymptotic curves,
fA(a), giving some clues to the possible shape of the f(a)
spectrum, which was not possible with the method of mo-
ments because of the problems observed for positive q.

As before, the 50-ha plot was divided into squares rang-
ing from 1 to 25 ha in size. For each sample of area A,
the relative abundance of each species, pi, was calculated,
as well as the respective Hölder exponent, a p �i

. The observed range of a values (log (p )/ log (A) 0.13 ≤i

) was then divided into 16 bins, with sizea ≤ 0.94
, and the number of occurrences in each binDa p 0.05

was determined. If the number of occurrences in a bin,
a′, is Sb, then Sb /Da is an approximation of Sa. The final
histogram of the number of species, Sa, as a function of
a for a given area A was obtained by taking the average
of all histograms of the subplots with the same area A.
Note that this process may lead to noninteger values of
Sa and, in particular, to . We are not interested inS ! 1a

the number of species in each bin but, rather, in the log
of this number divided by . For each histogram, thelog (A)
log of the number of species in each bin was taken followed
by division by . The curves obtained by this processlog (A)
correspond to fA(a). Preasymptotic fA(a) curves for five
different values of A (1, 4, 9, 16, 25 ha) are shown in figure
5a–5e. The negative values of fA(a) result from the aver-
aging process used to obtain these curves.

A striking feature in these plots is that the underlying
distributions are not lognormal. If they were, the curves
would have been symmetric relative to the maximum and
shaped like a negative quadratic polynomial (�x 2). The
curve that comes closest to this shape is the one corre-
sponding to the smallest area (1 ha; fig. 5a), although with
a truncated right side; all the other curves exhibit a clear
right fat tail. Since the right-hand side of the fA(a) curves
corresponds to the rarest species, this result demonstrates
that when the area increases, the number of rare species
observed increases considerably. The nonlognormality of
the species abundance curve of this tree community is not
a new result (see, e.g., Hubbell 1997, 2001). Here, however,
we show this result for different areas. Interestingly, we
also reproduce a well-known result: the approximate log-
normality observed for small sample sizes is not observed
when the sample sizes increase (see also discussion in the
next section).



150 The American Naturalist

Figure 4: The spectrum of generalized exponents zq

Figure 5: Histograms of the preasymptotic fA(a) curves for , 4,area p 1
9, 16, and 25 ha.

Figure 6 shows the previous preasymptotic fA(a) curves
on a single graph. The figures were vertically shifted to
make all the maxima coincide at zero. The heights of the
different curves are not important; what matters is the
shape of the curves (Evertsz and Berkner 1995). Visual
inspection of theses curves does not give unequivocal ev-
idence for convergence of the fA(a) curves. To assess the
similarity of the shapes of the preasymptotic fA(a), we
plotted the absolute difference between the curves of two
consecutive area sizes in figure 7.

Figure 7 shows a clear decrease in the absolute difference
between fA(a) curves of the smallest area sizes. In partic-
ular, note the constant decrease in the difference between
curves for the three smallest values of a, the region cor-
responding to the most abundant species.

To quantify the difference between curves, we computed
the total sum of the difference between two fA(a) of two
area sizes, A′ and A′′, according to

amax

FDf (a)F p Ff (a ) � f (a )F.′′ ′�A A i A i
a pai min

Results are shown in table 2. This table reveals an initially
rapid decline in the difference between the curves corre-
sponding to the two smallest areas, followed by smaller
for the curves of the larger areas. The difference between
the 16- and 9-ha curves is slightly above the one of the
9- and 4-ha curves. Notice that the smallest difference
between two curves is observed for the two largest areas,
suggesting that the curves are slowly converging.

These first results are encouraging. Nevertheless, much
more work is required to access the multifractality of the
species abundance distribution function, and in particular,
there is much scope to improve some of the methods
exemplified here. We believe that as larger sample areas
become available in the future, we will find stronger ev-
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Figure 6: Histograms of fA(a) for different values of the area. To help
comparison, the maximums were vertically shifted to zero.

idence of the multifractal pattern suggested. In any case,
application of multifractal methods to species abundance
distributions is likely to elucidate the characteristics of the
underlying species distributions.

Implications

There are a number of uses and implications of the theory
of multifractals for the description and measurement of
diversity in ecology. The two approaches to multifractals,
the method of moments and the histogram method, high-
light different aspects of diversity, SARs, and relative spe-
cies abundance patterns. We start with the method of
moments.

One of the most interesting results of the multifractal
method of moments is that it predicts a power-law scaling
relationship between the Shannon, the Simpson, and the
Berger-Parker diversity indices and area (eqq. [10]–[12]).
We encourage testing the prediction of such a scaling re-
lationship on a wide range of taxonomic groups in distinct
biomes. If the power-law scaling with area is observed,
then it is possible to extrapolate the value of the Shannon,

Simpson, and Berger-Parker diversity indices to larger ar-
eas, at least where the power-law SAR holds. It should be
noted that these indices were derived in the positive range
of q (see eq. [8]), where, at least for the BCI data, the
poorer fits to a power law were observed. We repeat that
it is premature to speculate how general this result is (i.e.,
poor fit to power laws observed in the positive range of
q among ecological communities).

The power-law relationship between the Shannon and
the Simpson indices and area may not be confined to the
species level. In fact, data collected by E. Guilbert (1998,
personal communication) on arthropod communities of
New Caledonia show at the family level that the Shannon
and the Simpson indices ( and , respectively)q p 1 q p 2
do exhibit a power-law relationship above a certain area.
It remains to be tested whether power laws are observed
for Guilbert’s data for other smaller and larger values of
q. The absence of a theoretical formalism relating the above
diversity indices and area, such as the one given by equa-
tion (8), may be the reason why the power-law scaling of
these indices has not been reported.

Another important insight given by the method of mo-
ments is the relationship between population density and
range size implied by equation (8). A positive relationship
between range and abundance is well documented in the
literature (e.g., Brown 1984; Gaston et al. 1997). Equation
(8) accommodates for such a positive relationship. To un-
derstand why range and abundance are correlated, con-
sider the extreme situations of and , whichq r �� q r ��
correspond to the least and most abundant species, re-
spectively. According to equations (12) and (13)

�z��p ∝ A ,min

�z��p ∝ A .max

Since , these equations imply that the relativez ≥ z�� ��

abundance of the rarest species decays faster with area than
the relative abundance of the most abundant species. One
possibility for this is that rare species have smaller ranges
than abundant species. However, one can imagine a species
that is rare everywhere but extremely widespread at low
density, but the evidence to date suggests that species such
as these are few, if any (e.g., Rabinowitz et al. 1986; Pitman
et al. 1999). More generally, the shape of the zq spectrum
(a monotonically decreasing function of q) implies a func-
tional relationship between the species abundance and
range—recall that in the limit , each value of qA r �
selects a particular value of pi—compatible with the fact
that more abundant species have larger ranges.

The importance of the relationship between species
abundance and range should not be underestimated for
understanding the observed values of z0, although it was
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Table 2: Total absolute difference of
the fA(a) curves of two consecutive
area sizes

Areas (ha) DfA(a)

4–1 1.214
9–4 .337
16–9 .390
25–16 .280

Figure 7: Absolute difference between preasymptotics, fA(a), of consec-
utive areas.

not part of the original theories of Preston (1962) and
May (1975). Leitner and Rosenzweig (1997) and Pelletier
(1999) have shown that in order to obtain z values close
to those empirically observed, one has to introduce a func-
tional relationship between abundance and range. Pelletier
(1999, p. 1984) considered that “the population density
of individuals in a species […] is an uncorrelated random
variable with variance , where N/A is the mean3/2V ∝ (N/A)
population density,” while Leitner and Rosenzweig (1997)
assumed a power-law relationship between population
density and range. The work by Leitner and Rosenzweig
(1997) is particularly relevant since it showed that assum-
ing simply that the range size is a linear function of abun-
dance led to z values close to 0.77, much higher than those
empirically observed. What the multifractal formalism
brings to this discussion is a relationship between the frac-
tion of individuals of a species pi and area A, which is not
an extra assumption but one that arises out of the mul-
tifractal theory applied to the power-law SAR.

The shape of the species abundance distributions and
the effect of sample size have been another pervasive theme
in ecological studies (e.g., Nee et al. 1991). The histogram
method, by dealing directly with the species abundance

distributions at different spatial scales, can give important
insights into this question. Fisher et al. (1943) first sug-
gested that the species abundance distribution could be
approximated by a log series. Later, Preston (1948) noticed
that the log series did not fit most of his data. Preston
(1948) argued that the difference observed in the shape
of the abundance distributions was an artifact of the sam-
ple size and, in particular, that the log series observed by
Fisher et al. (1943) was due to relatively small data sets.
Preston (1948) pointed out that when larger samples were
collected, a lognormal distribution would be a better ap-
proximation of the species abundance distribution. He also
noticed that the observed abundance distributions were
truncated lognormal curves that lacked the least abundant
species. Preston (1948) predicted that if larger samples
were collected, the omitted left side of the distributions,
corresponding to rare species, would be revealed. More
recently, however, abundance distributions obtained with
larger sets (e.g., Gibbons et al. 1993; Gregory 1994; Hub-
bell 1997, 2001) have failed to confirm Preston’s predic-
tion. In general, these abundance distributions have more
rare species than allowed by the symmetrical log-trans-
formed–lognormal distribution. These observations have
led several authors to challenge the assumption of log-
normality (e.g., Nee et al. 1991; Hubbell 1997, 2001; Harte
et al. 1999). An important aspect of the multifractal theory
is that it does not require a lognormal distribution (e.g.,
Mandelbrot and Evertsz 1996), and it accommodates dis-
tributions with long tails for rare species as observed in
real data sets. However, probably the most important in-
sight from multifractals on this issue is to show that the
species abundance distributions obtained at different areas,
after renormalization, should collapse into a single curve.
This result has far-reaching consequences, in particular,
for measurements of species diversity and conservation
studies because once multifractality has been established
it allows one to extrapolate the species abundance distri-
bution to larger areas where the power-law SAR is ob-
served. So far, studies have only attempted to extrapolate
species richness (e.g., Palmer 1990; Baltanás 1992; Colwell
and Coddington 1994).

If there are scaling laws, not only for species richness
but also for relative species abundance as a function of
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area, or if the distribution of relative species abundance
collapses after appropriate transformations, then both ob-
servations could be of immense practical utility for esti-
mating biodiversity on larger spatial scales than can be
reasonably or economically sampled. Whether these the-
oretical promises will be borne out in practice remains to
be seen.

Summary

We have applied the theory of multifractals to the dual
problems of the SAR and relative species abundance. The
application of multifractal methods was illustrated with
data on tropical trees and shrubs in a tropical forest in
Barro Colorado Island, Panama. The results of this ap-
plication suggest that wider testing of multifractal theory
is warranted on similar but larger areas and data sets. Our
analysis suggests the exciting and potentially far-reaching
conclusion that predictive scaling relationships exist, not
only for species-area curves but also for relative species
abundance on large spatial scales. Such scaling laws could
be of considerable value. These scaling laws may reveal
further laws, hitherto unsuspected, for how ecological
communities are assembled on local-to-landscape spatial
scales. These scaling laws also can be used as benchmark
criteria for evaluating the performance of mechanistic sim-
ulation models that attempt to recreate SARs and patterns
of relative species abundance.
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APPENDIX

The Relation between the f(a) and the zq Spectra

The partition function, xq(A) (eq. [7]), can be written in
terms of the Hölder exponent (eq. [14]) as

S(A) amax

�a q �qai jx (A) p (A ) p (A )S (A), (A1)� �q aj
ip1 jpamin

where is the number of species with exponent ajS (A)aj

within area A; this is a transformation similar to the one
between equations (4) and (5). If a is a quasi-continuous
variable, then the contribution to the sum from species
with a between a and isa � da

�qaS (A)(A )da.aj

If , the sum in the partition func-0 ! a ! a ! a ! �min max

tion can be replaced by the following integral

amax

�qax (A) p S (A)(A )da. (A2)q � aj

amin

Making use of equation (15), the number of species can
be written in terms of the scaling exponents f(a) as

f(a)S (A) ∝ A .aj

Substitution of the previous equation into equation (A2)
leads to

amax

[f(a)�qa]x (A) ∝ A da. (A3)q �
amin

To solve the previous integral, we make the following ap-
proximation: since , the value of the integral isA r ��
close to the contribution from the value of a that maxi-
mizes . That is, for a given q,[f(a) � qa]

d
[f(a) � qa] p 0,{ }da apa(q)

or

df(a)
p q, (A4)Fda apa(q)

and, since we require the extreme to be a maximum,
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2d [f(a) � qa(q)]
! 0,

2 Fda apa(q)

or

2d f(a)
! 0.

2 Fda apa(q)

The last equation shows that the f(a) curve is necessarily
cap convex, and equation (A4) shows that the maximum
of this curve occurs for .q p 0

Keeping only the value of a(q) that gives the maximum
contribution to the integral, equation (A3) can be written
as

f(a(q))�qa(q)x (a) ∝ A .q

From equation (8), we can say that

(1�q)zqx (a) ∝ A .q

Then, comparing the two previous equations,

(1 � q)z p f(a(q)) � qa(q). (A5)q

The last equation relates the spectra of zq and f(a). In
addition, a relation between a(q) and zq can be obtained
by taking the derivative of equation (A5) in order to q
and making use of equation (A4). The result is

dzq
a(q) p z � (1 � q) . (A6)q dq

The pair of equations (A5) and (A6) is a Legendre trans-
formation, and it allows the calculation of the spectrum
f(a) once zq is obtained and vice versa.
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Solé, R. V., and S. C. Manrubia. 1995a. Are rainforests
self-organized in a critical state? Journal of Theoretical
Biology 173:31–40.

———. 1995b. Self-similarity in rain forests: evidence for
a critical state. Physical Review E 51:6250–6253.

Associate Editor: Lewi Stone


