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Airborne LiDAR is increasingly used to map carbon stocks in tropical forests, but our understanding of
mapping errors is constrained by the spatial resolution (i.e., plot size) used to calibrate LiDAR with field data
(typically 0.1–0.36 ha). Reported LiDAR errors range from 17 to 40 Mg C ha−1, but should be lower at coarser
resolutions because relative errors are expected to scale with (plot area)–1/2. We tested this prediction
empirically using a 50-ha plot with mapped trees, allowing an assessment of LiDAR prediction errors at
multiple spatial resolutions. We found that errors scaled approximately as expected, declining by 38%
(compared to 40% predicted from theory) from 0.36- to 1-ha resolution. We further reduced errors at all
spatial resolutions by accounting for tree crowns that are bisected by plot edges (not typically done in
forestry), and collectively show that airborne LiDAR can map carbon stocks with 10% error at 1-ha resolution
— a level comparable to the use of field plots alone.
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1. Introduction

Future climate change mitigation policy will likely encourage
nations to reduce emissions from deforestation and degradation
(REDD) by protecting and increasing forest carbon storage (Herold &
Skutsch, 2011). Implementation of REDD will require large-scale,
high-resolution, and verifiable approaches to monitoring above-
ground tropical forest carbon stocks, which are the largest of any
biome (Fischlin et al., 2007). Airborne LiDAR is one of the most
promising methods; it can be applied across large regions at relatively
low cost compared to field sampling alone (Asner, 2009).

The use of airborne LiDAR data, whether for purely scientific research
purposes or in the policy and economic arena, requires a quantitative
understanding of the errors associated with LiDAR-based carbon maps.
Reported errors range from17 tomore than 40 Mg C ha−1 (RMSE) in the
tropics (Asner et al., 2010, 2011;Mascaro et al., 2011), and are comparable
in other biomes (Lefsky et al., 2002). However, these errors apply to the
calibration step (i.e., the ability of LiDAR to predict the carbon density of a
set of field inventory plots as assessed by a regression model), and not
necessarily to carbon maps produced by such regressions. Calibration
errors can be associated with mapped (predicted) carbon only if the
mapping resolution (or grain) is the same as the plot size, which in
existing studies ranges from 0.1 to 0.36 ha. Asner et al. (2010) noted that
predicted carbon error should decline as spatial resolution decreases,
because total errors increaseata slower rate than total carbon. Specifically,
Asner et al. (2010) predicted that errors should be proportional to (pixel
size)–1/2, in accordance with the general influence of sample size on the
standard error of themean. Thismeans that typicalmature forest errors of
18 Mg C ha−1 at aplot sizeof0.36 hawouldbeexpected todeclineby40%
when decreasing spatial resolution to 1 ha. Here, we evaluate mapping
errors at various spatial resolutions by correlating field-based above-
ground carbon density (ACD) data to airborne LiDAR data at multiple
field-plot sizes.

In addition to the tendency of error to decreasewith increasing grain
size, there are three sources of error that may influence the relationship
between LiDAR and field-estimated carbon density at all spatial
resolutions: (1) GPS positional error, (2) temporal differences between
the field and LiDAR data, and (3) disagreement between LIDAR and field
plot measurements over which trees or parts of trees are inside
calibration plots. In LiDAR measurements, tree crowns are bisected
exactly at the plot edge, while in field plot measurements, trees are
treated as being inside plots if and only if N50% of the rooted base of the
tree is contained within the plot (e.g., Condit, 1998). Errors of the first
type were assessed on a per-plot basis in one tropical study by Asner et
al. (2009) and found to be very low: adding simulated GPS errors of
several meters changed plot-specific carbon estimates by less than
5 Mg C ha−1 for all plots, and less than1 Mg C ha−1 formore thanhalf of
the plots. Temporal errors can be minimized by conducting field and
LiDAR campaigns simultaneously (which is typically attempted, Asner et
al., 2009, 2010, 2011). Errors of type three (differing plot edge
discrimination between LiDAR and foresters) have not been empirically
evaluated in any LiDAR carbon mapping study to our knowledge.
However, Nelson et al. (2000) speculated that poor LiDAR prediction of
ground-basedACD (90% error) in very narrowplots (5 m)was partly the
result of the exclusion in the ground data of overhanging tree crowns
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Fig. 1. Spatial organization of carbon in 5×5 m cells in the 50-ha forest dynamics plot
on Barro Colorado Island, Panama. Ground-based estimates of carbon density are
shown when each tree's carbon is (a) assigned to the position of its stem, and
(b) distributed uniformly over its estimated crown area, drawn as a circle around the
position of the stem, with radius estimated from diameter using an allometric model.
LiDAR-derived canopy height (c) is shown for comparison.
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captured by LiDAR. Allometric errors associated with field estimates for
ACD are as high as 78% of individual trees and 22% for the choice of
allometric model (Chave et al., 2004); these errors were not considered
here because they apply to all carbon estimates, including those used to
calibrate airborne LiDAR (e.g., Asner et al., 2010), whereas we were
interested in errors that apply specifically to LiDAR-based carbon
mapping.

In this study,we sought todevelopabetterunderstandingof the errors
in LIDAR predictions of aboveground forest carbon through two analyses
of airborne LIDAR and ground inventory data for the 50-ha forest
dynamics plot on Barro Colorado Island (BCI), Panama, where each stem
≥1 cmdiameter ismapped to the nearest 10 cmaccuracy. First,we tested
the prediction of Asner et al. (2010) that spatial errors would scale with
the inverse of the square root of pixel area as spatial resolution changes.
Second,we tested the importanceof plot-edgediscriminationerrorsusing
a novel approach to ground-based determination of the position of
standing carbon in forests. In typical practice, field inventories place
carbon in space according to the x and y coordinates of the center of each
stem, which we term the “stem-localized” approach. An alternative is to
distribute carbon in space according to the footprint of the tree's crown,
hereafter the “crown-distributed” approach. LiDAR is likely to be linked
more closely to crown-distributed carbondensity because LiDARenergy is
returnedmore strongly by canopymaterial oriented perpendicular to the
sensor (such as leaves and branches), rather than by tree boles that are
oriented toward the sensor. Therefore, we developed crown-distributed
maps of carbon density using an allometric relationship between tree
diameter and crown radius developed from field data for the same site
(Bohlman & O'Brien, 2006), and evaluated LIDAR mapping errors with
respect to both the stem-localized and crown-distributed maps.

2. Methods

In September 2009, we used the Carnegie Airborne Observatory
(Asner et al., 2007) to collect LiDAR data over the 50-ha forest dynamics
plot on BCI (9° 9′ N, 79° 50′W) (Mascaro et al., 2011). Forests on BCI are
tropical moist (Holdridge et al., 1971), with 2600 (±430)mm of rainfall
annually with a pronounced dry season between January and April
(b100 mm per month, Leigh, 1999). The LiDAR data were collected with
anOptech 3100EA (Optech Inc., Vaughan, ON), capable of four returns per
pulse, with beam divergence customized to 0.56 mrad (for complete
coverage without gaps between pulses). The system was operated at
2000 m above ground level with 1.12-m spot spacing, 30-degree field of
view, and 50-kHz pulse repetition frequency, for which the aircraft
maintained a ground speed≤157 kph. Flights were planned with 100%
repeat coverage (50% overlap of each swath to each adjacent swath) and
therefore LiDAR point density averaged 2 points per 1.12-m spot. We
analyzed thevertical profile of vegetationbybinningdiscrete LiDARpoint-
cloud data into volumetric pixels (voxels) of 5-m spatial resolution and 1-
m vertical resolution. By combining all voxels in each 5×5m spatial cell,
we created vertical histograms representing the full vertical spread of
LiDAR returns. These data were broken down to mean canopy profile
height (i.e.MCH, the vertical “center” of the canopy), a simplemetric to be
linked to grounddata (Lefsky et al., 1999). Although several LiDARmetrics
strongly predict forest carbon density, MCH is slightly but consistently
better than top-of-canopy height or alternative LiDAR-based indices, such
as quadratic mean canopy height (Asner et al., 2011).

LiDARMCHdatawerepreviously calibrated tofield-based estimates of
aboveground carbon density (ACD measured in 2009–2010) in 128,
60×60m quadrats within the 50-ha plot combined with 29, 20×50m
transects in younger forests in the Panama Canal Zone (Mascaro et al.,
2011). Field-estimatedACDwas determined for all living trees N1 cm dbh
using a combination of local and global allometric models that corrected
for local height and wood density variation (Mascaro et al., 2011),
producinganoverall carbonestimate for the50-haplot of 107 Mg C ha−1,
which is very close to another recent estimate of 103 Mg C ha−1 (DeWalt
& Chave, 2004). For the MCH-ACD relationship, 60×60 m quadrats
Please cite this article as: Mascaro, J., et al., Evaluating uncertainty i
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(0.36 ha)werechosen tobestmatchpreviousplot sizes (~0.28 ha)used in
closed canopy mainland tropical forests (Asner et al., 2010). This
calibration yielded a power-law model between ACD and MCH:

ACD = 1:4110�MCH1:4126 ð1Þ

which explained 85% of the variation in ACD with an RMSE of
16.6 Mg C ha−1. For the 60×60 m quadrats in mature forest, the
RMSE was 18.0 Mg C ha−1.

We used the published model to generate predictions of ACD from
LIDAR across 22 spatial resolutions within the 50-ha plot, from 0.04 to
12.5 ha. We used only the 22 native resolutions that utilized 100% of the
areawithin the 50-ha plot, including 17 thatwere rectangular rather than
square (Supplementary material, Table S1). We considered the influence
of differing plot shape, and found it to be very low (1.5 Mg C ha−1),
especially for the range of length-to-width ratios that we use to compare
across scales (Supplementary material, Figure S1). We compared errors
across all resolutions with respect to the previously published model
rather than refitting the model at each resolution because the secondary
forests plots originally used byMascaro et al. (2011)were noncontiguous
and therefore not combinable. We verified that this limitation did not
impact the overall pattern (Supplementary material).
n mapping forest carbon with airborne LiDAR, Remote Sensing of
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Fig. 2. Error in LiDAR-based carbon density prediction in the 50-ha forest dynamics plot on Barro Colorado Island, Panama, for a range of spatial resolutions, in comparison with
ground-based estimates calculated using stem-localized (a, c, e, g) and crown-distributed (b, d, f, h) approaches. Predictions at all resolutions were derived from LiDAR-measured
MCH using a model fitted at 0.36-ha resolution by Mascaro et al. (2011). Several points are outside the range of panels (a) and (b) to allow the bulk of the points to be compared on
standardized axes.
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Across the resolutions of interest, we compared LIDAR predictions
with two different ground-based estimates of ACD: (1) stem-localized
ACD, in which the carbon estimated for a single stem is positioned at
the x, y coordinates of the center of that stem (i.e., the typical
approach used in long-term forest inventory and biomassmonitoring;
Fig. 1a), and (2) crown-distributed ACD, in which the carbon
estimated for each stem is distributed on a circle representing the
stem's crown (Fig. 1b). In the latter case, estimated carbon within a
given cell at a given resolution (e.g., a 20×20 m quadrat) was the sum
of all circular crown footprints (on a proportional basis) that occupy
that cell. Crown radii were estimated from stem diameter using an
allometric model developed for the Barro Colorado Nature Monument
by Bohlman and O'Brien (2006):

R = exp −0:438 + 0:658�log D= 10ð Þ� � ð2Þ

where R is radius (m) and D is diameter at breast height (1.3 m) or
above buttress. All analyses were conducted in the R programming
language (R Development Core Team, 2009).
Please cite this article as: Mascaro, J., et al., Evaluating uncertainty i
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3. Results and discussion

As expected, LiDAR predictive power increased strongly with
decreasing spatial resolution (Figs. 2 and 3). From 0.04- to 6.25-ha
resolution, RMSE of observed carbon density as predicted by LiDAR
decreased from 63.2 to 6.5 Mg C ha−1 (Fig. 2, left panels). We also found
that LiDAR data predictions were a much closer match to crown-
distributed carbon density than to stem-localized carbon density,
particularly at finer spatial resolutions (Fig. 2, right panels). At 0.04-ha
resolution, RMSEdropped from63.2 to 28.6 Mg C ha−1when considering
crown-distributed rather than stem-localized carbon density (Fig. 2a
versus b).

RMSE of stem-localized carbon density declined as predicted by
Asner et al. (2010) for grain sizes from 0.08 to 1 ha, but decreased
slightly faster than predicted at resolutions finer than 0.08 ha, and
considerably slower than predicted at resolutions coarser than 1 ha
(Fig. 3). By contrast, RMSE of crown-distributed carbon density
declined at a much slower rate than predicted until ~1 ha, after which
stem-localized and crown-distributed carbon RMSE essentially con-
verged. Deviations from the theoretical prediction at resolutions finer
n mapping forest carbon with airborne LiDAR, Remote Sensing of
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Fig. 3. Observed decline in LiDAR-based carbon density prediction error with
decreasing spatial resolution in the 50-ha forest dynamics plot on Barro Colorado
Island, Panama, using stem-localized and crown-distributed aboveground carbon
density estimates (ACD), compared with the theoretical expectation that errors should
decline with (grain size)–1/2 (Asner et al., 2010). The calibration grain size is 0.36 ha
(Mascaro et al., 2011).
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than 1 ha reflect spatial autocorrelation in the carbon errors; these are
slightly negative for stem-localized carbon and strongly positive for
crown-distributed carbon (Supplementary material, Figure S2). At
resolutions coarser than 1 ha, the declining number of plots increases
the importance of a small amount of net error (~1 Mg C ha−1) caused
by the fact that the original calibration equation is leveraged in part by
secondary forest data not considered here (see Methods). The
departure may also reflect large-scale positive spatial autocorrelation
in errors caused by variation in forest structure (i.e., gaps), but the
limited number of plots precludes testing this hypothesis at present.
Although predicted errors departed from theoretical predictions at
very coarse resolutions, they continued to decline as a function of
decreasing spatial resolution and remained very low relative to field
errors (discussed further below).

The finding that crown-distributed carbon density was more
closely related to LiDAR predictions than stem-localized carbon
density is important because it demonstrates that a primary source
of error at fine spatial resolutions is disagreement between what is
and what is not inside a plot. In a LiDAR dataset, laser returns are
spatially rectified in three dimensions, reflecting the three-dimen-
sional nature of the forest canopy determined by the position of
leaves, branches, and other material. Thus, a plot “footprint” in a
LiDAR dataset is a cylinder that bisects trees based on the amount of
canopy material inside the plot volume. For foresters, by contrast,
N50% of a tree's bole must be contained within the plot footprint for a
tree to be counted inside a plot — but the distinction is all or nothing
(Condit, 1998).

In reality, carbon is distributed neither in stem-localized nor
crown-distributed fashion, but something in between. A majority of
carbon is stored in the bole of a tree, but approximately 30% may be
distributed across the crown (Brown, 1997). Thus, it could be argued
that stem-localized carbon density more closely resembles real
carbon density in a forest. However, our purpose is not to delineate
carbon density at the sub-tree levels: we believe such an exercise is
not destined to improve policy related to carbon retention in tropical
forests. Our use of crown-distributed carbon density here is merely
intended to show that LiDAR is better related to crown-distributed
than stem-localized carbon density — and when this relationship is
used, overall LiDAR mapping errors are lower. Although we
considered LiDAR and field ACD data, plot edge disagreement may
also produce errors in other remote assessments of forest structure,
Please cite this article as: Mascaro, J., et al., Evaluating uncertainty i
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including radar and passive optical techniques (e.g., Foody et al., 2003;
Saatchi et al., 2007).

We also detected a strong interaction between spatial resolution and
theground-basedmethodused tomapcarbondensity (i.e., stem-localized
versus crown-distributed). We found that the benefit of using crown-
distributed carbon density was greatest at the finest resolution, and
decreased progressively until at 1-ha resolution these methods were
roughly comparable. This reflects an increasing edge-to-interior ratiowith
decreasing spatial resolution: as plot size increases, the fraction of trees
with portions of their crowns falling across a plot edge decreases
dramatically.

For the purposes of LiDAR calibration, increasing plot sizesmay reduce
theapplication rangeof the calibrationmodel as thenumberofdatapoints
declines.However, this occurredhere because all plots consideredwere in
mature forest (Fig. 2), whichwould not be the casewhen planning a new
field calibration in a given region. Asner et al. (2010) found that ~24 plots
spanning a range of forest ages were necessary to stabilize a LiDAR-ACD
calibration model, and this number of 1-ha plots (24 ha total) is well
below the amount of sampling conducted for recent calibrations (e.g.,
Asner et al., 2010, 2011).

Our results suggest that LIDAR-derived maps of mature tropical
forest carbon density can achieve overall accuracy of 10% at 1-ha
resolution (RMSE=10.7 Mg C ha−1 relative to mature forest carbon
density of ~107 Mg C ha−1; Fig. 3). Because the same area was used
for calibration and prediction, these results may overstate accuracy to
some degree; however, region-specific LiDAR models of the type
considered here have shown consistently verifiable predictive power
across regions as large as 1 million hectares (e.g., Asner et al., 2010,
2011). Collectively, our results demonstrate that LiDAR mapping of
carbon density can be achieved with error levels comparable to field
campaigns, where landscape-scale sampling error may be 10% of the
mean or greater (Chave et al., 2004). Field-based sampling of carbon
density using forest inventory plots may produce landscape-scale
errors of 10–20% with a total sample size of 5 ha (Clark & Clark, 2000;
Keller et al., 2001), or 7% using 50 total ha of sampling in the same area
considered in this study (Chave et al., 2003). These errors also depend
on the size of the area sampled and the plot size used: smaller sample
area produces larger errors (Chave et al., 2004), and for any given
area, fewer larger plots lead to greater errors in landscape estimates
(Fisher et al., 2008). Thus, our results underscore the utility of
airborne LiDAR in fulfilling the ecological and policy-relevant need for
understanding geographic variation in tropical forest carbon density.
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