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Temporal turnover in the composition of tropical tree communities:
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Abstract. The degree to which turnover in biological communities is structured by
deterministic or stochastic factors and the identities of in”uential deterministic factors are
fundamental, yet unresolved, questions in ecology. Answers to these questions are particularly
important for projecting the fate of forests with diverse disturbance histories worldwide. To
uncover the processes governing turnover we use species-level molecular phylogenies and
functional trait data sets for two long-term tropical forest plots with contrasting disturbance
histories: one forest is older-growth, and one was recently disturbed. Having both
phylogenetic and functional information further allows us to parse out the deterministic
in”uences of different ecological “lters. With the use of null models we “nd that compositional
turnover was random with respect to phylogeny on average, but highly nonrandom with
respect to measured functional traits. Furthermore, as predicted by a deterministic assembly
process, the older-growth and disturbed forests were characterized by less than and greater
than expected functional turnover, respectively. These results suggest that the abiotic
environment, which changes due to succession in the disturbed forest, strongly governs the
temporal dynamics of disturbed and undisturbed tropical forests. Predicting future changes in
the composition of disturbed and undisturbed forests may therefore be tractable when using a
functional-trait-based approach.
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INTRODUCTION

A central challenge in community ecology is to
determine the mechanisms that govern the structure
and dynamics of biological communities (Hubbell 2001,
Chase and Leibold 2003). Perhaps nowhere is this
challenge greater than in tropical tree communities
(Wright 2002), which contain large numbers of species
with low population sizes. Mechanisms proposed to
explain the dynamics of tropical tree communities vary
along a continuum from deterministic (niche-based;
Levine and HilleRisLambers 2009) to stochastic (dis-
persal…limitation and ecological drift; Hubbell 2001).
Deterministic processes are expected to produce patterns

of species turnover that are nonrandom with respect to
species• functional ecology and, if function is evolution-
arily conserved, phylogenetic relationships. If stochastic
processes dominate, turnover is expected to be random
with respect to both species• function and phylogenetic
relationships.

The relative degree to which tropical tree community
dynamics are deterministic or stochastic is impossible to
quantify from temporal changes in species composition
alone. This is because species names do not convey
critical information regarding the ecological and evolu-
tionary similarity of species (Webb 2000, Swenson et al.
2007, 2011, Swenson and Enquist 2009, Swenson 2011a).
For example, complete turnover in the species compo-
sition of a community could result in a functionally
analogous community, a directional change in the
functional composition of a community, or changes in
the community composition that are random with
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phylogenetic signal in the data (Table 1). There was also
little to no phylogenetic signal in species abundances in
both plots (Table 1), which was important for null
model selection.

Species, phylogenetic, and functional temporal turnover

The primary goal of this study was to examine the
degree to which the compositional turnover of the two
forests was nonrandom with respect to phylogeny and
functional traits. We “rst quanti“ed the species turnover
in both forests. Both forests showed a substantial
temporal decay in the species composition. The compo-
sitional turnover was greater in Luquillo, but the BCI
forest also demonstrated a strong turnover through time
(Appendix C).

The phylogenetic results show that on average the
phylogenetic turnover in both forests has been random
when accounting for the underlying levels of species
turnover (Fig. 1). In other words, across the forest there
was no clear directional trend in the phylogenetic
turnover. In contrast to the phylogenetic results, the
functional turnover of both forests has been highly
nonrandom, but in opposing directions. In particular,
the functional turnover in the BCI-FDP has been less
than that expected given the underlying levels of species
turnover while the functional turnover in the LUQ-FDP
has been higher than expected given the underlying
levels of species turnover (Fig. 1). In other words, the
functional composition has been rather static in the
BCI-FDP and directionally changing in the LUQ-FDP.
This was con“rmed by examining the forest-wide trait
distributions in each of the two plots on a trait-by-trait
basis (Fig. 2). This analysis shows little-to-no change in
the forest-wide trait distributions in the BCI-FDP and
signi“cant shifts in the trait distributions in the LUQ-
FDP through time. Thus for BCI-FDP, while there has
been a large stem turnover through time, the new
cohorts are more functionally similar to the stems that
die than expected by chance. Conversely, the new
cohorts in the LUQ-FDP have tended to be more

functionally different from those stems that die than
expected by chance.

Habitat-speci“c phylogenetic and functional turnover

A “nal goal of this paper was to examine whether
rates of phylogenetic and functional turnover differ
between habitat types in the two forest plots. Interest-
ingly, while the phylogenetic turnover of the BCI-FDP is
on average random phylogenetically, there was variation
in the rate of turnover between habitats (Fig. 3). In
particular, the ••swamp•• habitat of the BCI-FDP had a
much higher rate of phylogenetic turnover while the
••young•• habitat had a much lower rate of turnover
when compared to the other habitats suggesting that the
phylogenetic turnover of the BCI-FDP is not completely
random. The phylogenetic turnover of the LUQ-FDP,
on the other hand, had only little differentiation between
habitats.

The functional turnover in both forest plots was
signi“cantly different between multiple habitat type pairs
(Figs. 1 and 3). Of particular interest is the “nding that
the young habitat in the BCI-FDP had an elevated rate of
functional turnover similar to the values found in the
LUQ-FDP. The analyses of the LUQ-FDP show that
early on the more disturbed areas of the forest had very
little functional turnover, but these areas rapidly turned
over functionally from 2000 to 2005 (Figs. 1 and 3).

DISCUSSION

Discerning the mechanisms underlying the temporal
dynamics of late- and early-successional plant commu-
nities is a major challenge in ecology. This is particularly
true given the increasing number of secondary forests
worldwide and future alterations to the climate. Hyper-
diverse tropical tree communities present a vexing
system for such research given their high biodiversity,
small population sizes, and relatively slow temporal
dynamics when compared to systems such as species-
poor temperate herbaceous communities. Further,
mechanistic insights into community dynamics may
not be possible by only quantifying the turnover of
species names and abundances through time in absence
of information pertaining to their function and general
similarity to one another. Ultimately, studies of the
long-term dynamics of tropical tree communities that
incorporate information pertaining to species function
and similarity hold perhaps the best chance of uncov-
ering the mechanisms underlying their dynamics. Here
we have presented such a study that has aimed to test
whether the temporal turnover of two tropical forests
has been deterministic by quantifying the degree to
which their phylogenetic and functional turnover has
been nonrandom.

The results of our analyses indicate that tropical tree
community dynamics are governed primarily by deter-
ministic factors in both of the forests studied. Speci“cally,
functional composition of the relatively undisturbed BCI-
FDP subplots has, on average, turned over less than

TABLE 1. Results from a test for phylogenetic signal in the
functional trait data from the Barro Colorado Island (BCI)
Forest Dynamics Plot (Panama) and Luquillo Forest
Dynamics Plot (Puerto Rico), using theK statistic proposed
by Blomberg et al. (2003).

Trait

K statistic

BCI Luquillo

log10(maximum height) 0.03 0.060
log10(leaf area) 0.05 0.100
Leaf %C 0.03 0.010
Leaf %N 0.09 0.050
Leaf %P 0.04 0.080
log10(seed mass) 0.07 0.130
log10(speci“c leaf area) 0.02 0.060
Wood speci“c gravity 0.03 0.070
log10(abundance in “rst census) 0.099 0.144

Note: Values of K . 1 indicate phylogenetic signal in trait
data.
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FIG. 1. Null model results for temporal turnover in the phylogenetic and functional composition of both forests (Barro
Colorado Island Forest Dynamics Plot, Panama [BCI-FDP] and Luquillo Forest Dynamics Plot, Puerto Rico [LUQ-FDP]).
Histograms represent quantile scores for the 1250 BCI-FDP subplots and the 400 LUQ-FDP subplots. Low quantile scores (blue)
indicate lower than expected turnover in the phylogenetic or functional composition of the subplot, given the observed level of
species turnover. High quantile scores (red) indicate higher than expected turnover in the phylogenetic or functional composition of
the subplot, given the species turnover. Insets are maps of the forest dynamics plots where subplot colors follow the histogram color
scheme. Maps are oriented on a north…south axis. Quantile scores provide a continuous measure of the magnitude of departure
between observed and expected turnover; values, 2.5 or . 97.5 are signi“cant at the 0.05 level.
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dynamics. Given the large number of species in tropical
forests it has proven dif“cult to perform complex
physiological measurements on multiple individuals in
each species in entire communities and to strongly
consider intraspeci“c variability. We suspect that this
will continue to be an issue, but in locations such as
Luquillo and BCI with large numbers of researchers
these obstacles may be overcome. Last, the present study
only considers individuals. 1 cm in diameter and does
not address the dynamics of seedling communities where
different traits or processes may become more impor-
tant. Similar research to that presented here performed
on tropical seedling plots would therefore be highly
valuable.

CONCLUSIONS

Here by directly quantifying the functional and
phylogenetic composition of communities through time
in a comparative analysis we have provided evidence of
nonrandom temporal turnover in the species compo-
sition of two tropical forest dynamics plots. These
results reject a model based purely on stochastic
factors such as ecological drift, reject a model based
purely on more closely related species sharing more
pathogens, and support a model in which community
dynamics are primarily governed by the “t of
individuals to their abiotic environment. The domi-
nance of ecological “ltering suggests that it may be
possible to predict the future composition of tropical
forests with diverse disturbance histories on the basis
of plant function.
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Appendix A

The results of the PCA analyses of functional traits (Ecological ArchivesE093-046-A1).

Appendix B

Maps of habitat types in each forest plot (Ecological ArchivesE093-046-A2).

Appendix C

Temporal turnover of species composition results (Ecological ArchivesE093-046-A3).

Appendix D

The results of the habitat analyses (Ecological ArchivesE093-046-A4).
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