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Abstract Competition between neighboring plants

plays a major role in the population dynamics of tree

species in the early phases of humid tropical forest

succession. We evaluated the relative importance of

above- versus below-ground competition during the

first years of old-field succession on soil with low

fertility in Southern Mexico, using the premise that

competition for light is size-asymmetric, unlike com-

petition for nutrients. Plant growth is thus expected to

be disproportionally impeded by larger neighbors. We

studied how growth and survival of 3.5–5.5 m tall

saplings of Cecropia peltata and Trichospermum

mexicanum, two pioneer species that dominate the

secondary forests in the study region, varied with the

abundance and size of neighboring trees in 1–2 year

old secondary vegetation. We found that local neigh-

borhood basal area varied 10-fold (3 to 30 cm2 m-2)

and explained most of the variation in diameter and

height growth of the target saplings. Most growth

variables were strongly affected by the neighbors

bigger than the focal trees with no significant additive

effect of the smaller neighbors, indicating asymmetric

competition. Smaller neighbors did have a small but

significant additive effect on the diameter growth of

Cecropia saplings and stem slenderness of Tricho-

spermum saplings. We conclude that competition for

light was more important than belowground compe-

tition in this initial phase of moist tropical forest

successional, despite the low soil fertility.

Keywords Forest succession � Asymmetric

competition � Growth � Survival � Stem allometry �
Light � Tropical moist forest � Mexico

Introduction

Secondary forests are becoming increasingly impor-

tant throughout the tropics as old-growth forests are

being cleared and cultivated land is being abandoned
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(Hansen and DeFries 2004). The conservation of

biodiversity and ecosystem services provided by

tropical forests are increasingly depending on the

species composition and structure of these secondary

forests (Chazdon et al. 2009; Dent and Wright 2009;

Gardner et al. 2009). A major determinant of the

species composition and structure of secondary forests

is the course of early succession, when pioneer species

with different demographic and functional character-

istics compete to establish and set the template for

further community assembly (Norden et al. 2011).

With seed limitation and environmental filtering,

competition for resources between neighboring plants

is considered to be the main determinant of the species

composition and structural development of tropical

forests during early succession (Peet and Christensen

1980; Bazzaz 1990; Chazdon 2008). Competition

plays a role as soon as resource neighboring plants

start to overlap and intensifies with time as plants grow

bigger and preempt an increasing proportion of the

available resources (Bazzaz 1996; Keddy 2001; Grime

2002).

In the humid tropics, aboveground biomass can

accumulate very rapidly during the first years of

secondary forest succession (Swaine and Hall 1983;

Uhl 1987; van Breugel et al. 2006; Fonseca et al.

2011), with the leaf area index (LAI) and understory

light levels approaching old-growth values within just

few years (Uhl 1987; Saldarriaga and Luxmoore 1991;

Selaya et al. 2007; Kuijk et al. 2008). This finding has

led to the commonly held assumption that competition

for light plays a predominant role in the early phases of

succession in humid tropical forest ecosystems.

However, where soil fertility is lower, nutrients

may also be an important limiting factor (Wilson

1999), and successional models based solely on

competition for light may not explain successional

changes. For example, young secondary forest on soils

with a long history of intensive pasture use in central

Amazonia had much lower LAI, but not stand biomass

compared to secondary forests on lighter-used soils

(Feldpausch et al. 2005), suggesting a less prominent

role of light. Moreover, it has been hypothesized that

competition for nutrients dominates in the earliest

phase of succession while competition for light

becomes more important as stand biomass increases

(Huston and Smith 1987; Belcher et al. 1995). To our

knowledge, few studies have directly assessed the

relative importance of competition for light relative to

nutrients during tropical forest succession.

The relative importance of above versus below-

ground competition can be assessed by considering the

asymmetry of competition (Schwinning and Weiner

1998). Competition for light is assumed to be

predominantly asymmetric because larger plants

shade smaller ones and capture a disproportionally

larger share of the available light (Weiner 1990;

Berntson and Wayne 2000; Potvin and Dutilleul

2009). Competition for soil water and nutrients, in

contrast, is often taken to be symmetric, based on the

premise that roots generate depletion zones around

their surfaces and thus restrict resource availability for

other roots relative to plant size (Noordwijk et al.

1996; Schwinning and Weiner 1998; Casper et al.

2003; but see Rajaniemi 2003). In temperate second-

ary forests, different degrees of asymmetry have been

reported and it has been suggested that this reflects

variation in the relative role of light competition

among sites (Thomas and Weiner 1989; Peterson and

Squiers 1995; Kikuzawa and Umeki 1996). The

importance of light as a limiting factor may also be

inferred from allocation patterns, as trees generally

tend to allocate resources to height growth at the

expense of diameter growth under low-light condi-

tions, particularly in the case of early successional

species (Kohyama and Hotta 1990; King 1996; Poorter

2001; Sterck 2005), making it a useful variable to

assess the relative importance of competition for light

in the early phases of succession.

In this study, we investigated the relative impor-

tance of above- and below-ground resources as factors

limiting growth of pioneer species during forest

succession on a nutrient-poor soil in southern Mexico.

We used two tree pioneer species, Cecropia peltata L.

and Trichospermum mexicanum (DC.) Baill. (hence-

forth referred to by genus name), which are the two

most dominant species in the secondary forests in the

study region and have similar characteristics

(Table 1). Specifically, we test the hypothesis that

sapling performance is disproportionally affected by

the neighbors that are larger than the focal sapling.

Strong asymmetry would indicate that aboveground

competition (for light) is important, whereas symme-

try would suggest that competition for belowground

resources is more important. Our approach was to

determine how individual growth over 1 year varied
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with the presence and the relative size of neighboring

trees.

Methodology

Study site and data collection

Fieldwork was conducted in the Marqués de Comillas

region in southern Chiapas, Mexico (168040 N; 908450

W). The climate is characterized by an annual

temperature of 23.8�C, a mean annual rainfall of

2802 mm and a dry period (monthly precipita-

tion \ monthly evaporation) from February to April.

The study period was slightly wetter, with a total

annual rainfall of 3017 mm and a dry period from

March to April (CFE, División Hidrométrica Sureste,

unpublished data). The original vegetation in the

region is lowland moist tropical forests (Ibarra-Man-

rı́quez and Martı́nez-Ramos 2002) and consists cur-

rently of a mosaic of pastures, young (mostly

\10 years) secondary forests, small-scale slash-and-

burn agriculture, and remnants of old-growth forests

(de Jong et al. 2000; Zermeño Hernández 2008).

Data was collected in a young secondary forest on

abandoned farmland that was cleared and burned from

old-growth forest before cultivation, farmed for maize

for one harvest period only and abandoned about

1.5 year before plot establishment. The forest was

situated in an area with undulating hills (slopes

15–30�), the most common geomorphological unit in

the region characterized by sandy Humic Acrisols

with pH of 5.91 (±0.29 SE), 0.26% (±0.03 SE) total

nitrogen, and 3.14 mg/kg (±0.26 SE) phosphorous (I.

Zermeño unpublished data). In September 2000, two

plots of 10 9 50 m were established at approximately

200 m distance from each other in which all trees with

a DBH (diameter at 1.3 m) C1 cm were tagged, their

DBH and height were measured and their position was

established at the scale of 1 9 1 m quadrats within a

permanently indicated 2 9 2 m grid. DBH and height

of all trees, including recruits, were measured and

mortality recorded after 14 months. The two plots

differed in number of stems and basal area (Table 2).

The number of species was 21 and 37 in plot 1 and 2,

respectively, and 44 in both plots combined. The six

most dominant species in both plots were Cecropia

peltata, Trichospermum mexicanum, Ochroma pyra-

midale, Trema micrantha, Trema laxiflora, and

Schizolobium parahyba. Together, these species con-

stituted 85% and 97% of total basal area in plot 1 and

plot 2, respectively.

Tree selection

To minimize the dependence between focal tree size

and the relative contribution of its smaller neighbors

to total neighborhood basal area, we compared

performance of focal trees of similar height. Trees

were selected from the 3.5–4.5 and 4.5–5.5 m height

ranges (henceforth, referred to as the 4- and 5-m

height classes, respectively), in which both species

were most abundant. For the growth analysis, trees

were randomly selected from our database. Trees

that were within the neighborhood of a previously

selected tree, or that had any kind of visible damage

reported in one of the two censuses were discarded.

This procedure went on until no new trees could be

included. This resulted in four different data sets

(2 species 9 2 height classes) for which all analyses

were performed separately with 40–61 focal trees

each.

Table 1 Species characteristics of Cecropia peltata L. (Cp) and Trichospermum mexicanum (DC.) Baill. (Tm)

Cp Tm Source

Dispersal syndrome Animal Wind Burns and Honkala (1990); Fleming and Williams (2009)

Mortality (%) 69 5 This study; from nine 1–5 years old study plots over 2-year period

Frequency (%) 75 62.3 Percentage occurrence in 76 secondary forest plots in the research region

(van Breugel 2007)

Dominance (%) 37.5 33.8 Percentage of 76 plots in which the species held C10% of the stand basal area

(van Breugel 2007)

Maximum life span 35 30 Data and observations from long-term studies at Los Tuxtlas and present study region

(M. Martı́nez-Ramos et al. unpublished data)

Maximum height 20 (18) 15 (18) Pennington and Sarukhán (2005), between parentheses observed maximum in our plots
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Neighborhood competition

Neighborhood basal area (NBA) was used as a proxy

for the level of neighborhood competition. The neigh-

borhood of a focal tree was defined as the area

consisting of its own and the 24 adjacent 1 9 1 m

quadrats. The effect of neighborhood competition on

focal tree growth was analyzed with the basal area of

neighbors larger than the focal tree (NBAL) and basal

area of neighbors smaller than the focal tree (NBAS) as

separate predictor variables (correlation coefficients

between NBAL and NBAS varied between r = 0.03

and r = 0.23, P [ 0.05 in all cases). All species were

lumped in our measure of NBA, i.e., we tested a model

that assumes that all competitors had equivalent effects

on the focal tree regardless of their taxonomic identity.

Growth responses

We used four different variables to quantify the growth

response of focal trees: (1) Relative height growth

(RHG), calculated as (ln Hcensus 2–ln Hcensus 1)/(365/t),

where t = the study period in days. Plant performance

is likely to be correlated with plant size (Duncan 1995),

an effect that was accounted for by selecting trees

within narrow height classes. (2) The percentage of

potential diameter growth rate (PPDG, %, see next

paragraph). Since the potential diameter growth is

calculated as a function of size, the size effects on plant

performance is accounted for. (3) Slenderness, calcu-

lated as the ratio between height and diameter at the

initial census (m cm-1). (4) D slenderness, calculated

as slendernesscensus 2/slendernesscensus 1.

Potential diameter growth increment (PDG) was

estimated by fitting a DBH-growth function (Zeide

1993; Vanclay 1994) through the upper (99%)

quantiles of 2-year growth data using non-linear

quantile regression (Scharf et al. 1998; Koenker

2005) (see online resource 1 for more details). Data

were from nine 1–5 year old secondary forest plots

with similar soil and land-use history. Next, we

calculated the annual relative diameter growth rate

for each focal tree as (ln DBHcensus 2-ln DBHcensus 1)/

(365/t) and multiplied this rate with initial diameter to

estimate the annual absolute diameter growth rate

(ADG, cm2 year-1) for each focal tree. PPDG was

then calculated as 100 9 ADG/PDG (%).

Data analysis

To test the hypothesis of competitive asymmetry, we

used multiple linear regression adding the predictor

variable NBAL first, then NBAS and finally the

interaction term. If NBAS and the interaction term

were significant (type I sum of squares), we checked

the type III sum of squares to examine if the effect of

NBAS on the response variable was additive, an

interaction effect, or both. We report statistics of the

final models only including the significant factors. To

obtain linearity, normality of the residuals and homo-

geneity of variances, we applied a Box–Cox transfor-

mation on the response variables RHG and PPDG

(Sokal and Rohlf 1995). No transformation was

needed for the other two response variables. Assump-

tions regarding heteroscedasticity and normality were

examined with residual plots and QQ plots (Quinn and

Keough 2002).

Results

Growth and survival

The species had strongly different survival rates.

Survival in Cecropia was strongly related to tree size,

going up from 18.2 and 28.0% in the height classes

\3.5 and 3.5–4.5 m to 57 and 77.4% in the 4.5–5.5 and

[5.5 m height classes, respectively. Survival in

Trichospermum, on the other hand, was very high,

with 81.1, 93.4, 95.7, and 97.2% survival, respectively.

Height growth ranged from 0.14 to 4.30 m year-1

in Cecropia and 0.00–4.60 m year-1 in Trichosper-

mum. Diameter growth (ADG) of Cecropia ranged

from 0.03 to 1.63 cm year-1 (4-m height class) and

0.03–3.70 cm year-1 (5-m height class) and from 0.04

Table 2 Plot characteristics and sample size. Indicated are

total number of trees with DBH C1 cm and the sum of their

basal areas

Height class Number of trees Basal Area (m2)

Plot 1 Plot 2 Plot 1 Plot 2

\3.5 m 333 790 0.08 0.11

3.5–4.5 m 176 (25/31) 418 (15/30) 0.14 0.14

4.5–5.5 m 78 (15/11) 260 (31/41) 0.12 0.16

C5.5 m 22 356 0.08 0.63

Between brackets the number of selected Cecropia and

Trichospermum saplings, respectively

28 Plant Ecol (2012) 213:25–34
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to 5.33 cm year-1 (4-m height class) and

0.06–5.94 cm year-1 (5-m height class) for Tricho-

spermum. This is a reduction between 0 and 100% of

potential growth in both species (Fig. 1e–h).

Neighborhood effects

The neighborhood basal area varied widely among the

focal trees, ranging 10-fold (3–30 cm2 m-2; Fig. 1)

and was dominated by few pioneer species (Online

resource 2).The contribution of smaller trees to total

NBA area (NBAS) was highly variable and averaged

40.7% ± 25.4 SD and 50.1% ± 25.4 SD for the 4-

and 5-m height class, respectively in Cecropia, and

15.7% ± 14.5 SD and 25.2% ± 14.3 SD in Tricho-

spermum. NBAS was not significantly correlated with

NBAL for any species (P [ 0.05).

The basal area of the larger neighbors (NBAL) had a

strong negative effect on the RHG of both Cecropia

and Trichospermum in both size classes (Fig. 1a–d;

Table 3). NBAS, on the other hand, had no significant

additive effect (Table 3), despite its substantial con-

tribution to total NBA. Diameter growth was also

strongly negatively related to NBAL, although with a

lower R2 (Fig. 1e–h; Table 3). NBAS did have a

significant additional effect on diameter growth of

Cecropia, but not of Trichospermum (Table 3).

Slenderness at the initial census was linearly and

positively related to NBAL in all cases (Fig. 2;

Table 3). In Trichospermum, NBAS did not have a

significant additive effect, but the interaction term

(NBAL9S) was significant and opposite to the effect of

NBAL (Table 3). During the study period, slenderness

increased in nearly all Cecropia trees and the rate of

increase was negatively related to NBAL (Fig. 2e–f;

Table 3). Slenderness of Trichospermum increased in

about 50% of the focal trees, and decrease in the other

50%, but without any relationship with NBAL

(Fig. 2g–h). NBAS, on the other hand, did have a

significant positive effect on relative rate of change of

slenderness of 4-m high Trichospermum (Table 3).

Discussion

This study suggests that during early secondary

succession aboveground competition for light is more

important than belowground competition for nutrients,

despite the low soil fertility in this forest. As expected,

larger neighbors showed strong effects on growth of

focal trees, while smaller neighbors had no or a limited

additional competitive effect, suggesting a predomi-

nantly asymmetric competition.

Competition from larger neighbors drove variation

in growth

Early secondary forests are often described as having a

uniform canopy (e.g., Richards et al. 1996). Yet, at the
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Fig. 1 The relationship between sapling performance and the

basal area of larger neighbors. RHG is the relative height growth

rate and PPDG is percentage of potential diameter growth rate

(%). Focal species: Cecropia peltata (a, b, e, f), Trichospermum
mexicanum (c, d, g, h). Height class: 3.5–4.5 m (a, c, e, g);

4.5–5.5 m (b, d, f, h). Linear (C) and power regression lines are

included to illustrate trends (P B 0.01 in all cases). Test

statistics on the relationship between neighborhood competition

and sapling growth in Table 3
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scale of small saplings, neighborhood density varied

ten-fold. Along this range of values, and strongly

correlated with it, height growth varied over five-fold,

and suppression of diameter growth ranged from 0 to

100%. More specifically, most of the variation in

diameter and height growth of similar-sized Cecropia

and Trichospermum saplings could be explained by

the basal area of their larger neighbors, suggesting a

predominant role of competition for light.

Smaller neighbors did not have a significant

additive effect on height growth, despite representing,

on average, 30% (±24 SD) of the total NBA, nor did

they affect diameter growth in Trichospermum. How-

ever, smaller neighbors did account for a part of the

variation in diameter growth of Cecropia. This may

suggest a role of symmetric competition for below-

ground resources, but we will discuss alternative

explanations later.

Competition did not only reduce overall growth

rate, but also affected allocation patterns. Initial stem

slenderness of both species was strongly related to the

basal area of the larger neighbors, reminiscent of the

negative relationship between slenderness and light

commonly found for light demanding species (King

1994, 1996; Poorter 2001; Sterck 2005; Palomaki et al.

2006). It is not clear why changes in slenderness of

Trichospermum saplings during the study period were

not related to NBA at all. Slenderness of all Cecropia

saplings did increase further but the rate of that

increase was negatively related to basal area of larger

neighbors. This seems to reflect how, along a temporal

gradient of progressively stronger competition for

light, trees first limited allocation to diameter growth

and then to height growth, thus indicating that the

suppressed saplings were getting closer to a negative

carbon balance (Bongers and Sterck 1998; Sterck

2005; Turnbull 2005).

Symmetry does not necessarily imply

belowground competition

The significant additive negative effect of the smaller

neighbors on diameter growth and survival of Cecro-

pia suggests that competition was at least partially

symmetric, which often is taken as an indication that

the competition for belowground resources plays an

important role (e.g., Thomas and Weiner 1989;

Peterson and Squiers 1995). However, it has also been

argued that, even if competition is mediated by light,

the degree of asymmetry may differ depending on

crown allometry of competing trees and canopy

structure of the stand (Kikuzawa and Umeki 1996),

which may result from species differences (Uriarte

et al. 2004, 2005; Selaya et al. 2007; Kuijk et al. 2008;

Uriarte et al. 2010).

The latter interpretation is supported by our obser-

vation that the basal area of the taller and of the smaller

neighbors was not significantly correlated; density

patterns of smaller neighbors may thus have reflected

variation in local light availability not explained by the

neighborhood basal area of larger neighbors (Mont-

gomery and Chazdon 2001). More specifically,

87–95% of the smaller neighbors belonged to six

light-demanding pioneer species (Online Resource 2);

Table 3 Relationship of growth with competition for two pioneer species in early successional forest

RHG PPDG Slenderness DSlenderness

HC NBAL NBAL NBAS NBAL NBALxS NBAL NBAS

Cecropia peltata

4 m -0.56*** -0.32*** -0.10** ?0.70*** ns -0.46*** ns

5 m -0.76*** -0.56*** -0.07** ?0.73*** ns -0.16** ns

Trichospermum mexicanum

4 m -0.78*** -0.80*** ns ?0.68*** -0.14** ns ?0.20**

5 m -0.68*** -0.59*** ns ?0.66*** -0.05** ns ns

Regression statistics of growth variables (response) versus neighborhood basal area (regressor), with RHG = relative height growth;

PPDG = percentage of potential absolute diameter growth; Slenderness = height–diameter ratio; DSlenderness = slendernesscensus

2/slendernesscensus 1. HC is height class: 4 m = 3.5–4.5 m; 5 m = 4.5–5.5 m. NBAL: basal area of larger neighbors, NBAS: basal

area of smaller neighbors, NBALxS: interaction term. The table presents the sign of the regression coefficients (i.e., a negative or

positive relationship), the partial coefficients of determination (partial R2) and the significance level of the regression variables

** P \ 0.01, *** P \ 0.001, ns = P [ 0.05

30 Plant Ecol (2012) 213:25–34
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high densities of these species likely indicated higher

understory light levels. Moreover, an allometry study

conducted in our study site found that the relative

crown depth of Cecropia, Trichospermum and 10

other of the locally most abundant species (average

height 2.7 m ± 0.04 SE, van Breugel 2007) was

strongly and positively related to light availability.

Combined, these points suggest that a high density of

smaller neighbors correlates positively with crown

depth, causing competition for light between overlap-

ping crowns of focal trees and their smaller neighbors

(Ewel and Mazzarino 2008).

An additional and unrelated indication for a rela-

tively limited role of belowground competition comes

from the above mentioned allometry study: Averaged

across 260 saplings of 12 species, the projected root

area was 3.0 (±0.2 SE) times smaller than the

projected crown area (M. van Breugel unpublished

data). Overall, our findings represent strong evidence

for a predominant role of light competition during the

first years of succession, despite the low soil fertility.

Competition and succession

Cecropia and Trichospermum are the two most widely

distributed and abundant species across the secondary

forests in our study area (van Breugel 2007). Both are

pioneer species with similar maximum age and stature

(Table 1) and comparable functional traits (Lohbeck

et al. unpublished data), but they differed considerably

in growth and survival rates and their tolerance to

neighborhood competition. Such differences among

dominant species may have a strong effect on com-

munity-level species dynamics (Norden et al. 2011);

hence understanding their population dynamics is

pivotal for a better understanding of secondary forest

succession (Gaston and Fuller 2008).

Few studies thus far have directly assessed the role

of competition during the early years of tropical forest

succession, despite its pre-eminent place in forest

succession models. The results of our study strongly

suggest a predominant role for light competition as a

mechanism shaping population dynamics of tree

species during the initial phase of secondary forest

succession. They also show that competition may start

and strongly intensify within the first 1–2 years of

succession and can drive most of the variation in

growth and survival among saplings of early succes-

sional species (stem exclusion phase, cf. Finegan

1996; Chazdon 2008).

Competition during the first years of succession

was found to be largely asymmetric in a fallow in its

first slash-and-burn cycle in the Bolivian Amazon

(Selaya 2007), but was found to be largely symmetric

in a fallow in Vietnam on a soil that was very degraded

after multiple cycles of plantation use (Kuijk et al.
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Fig. 2 The effect of neighborhood competition on stem

slenderness. Neighborhood is expressed as the basal area of

the larger neighbors. Slenderness is calculated as the ratio

between height (m) and diameter (cm). Both variables are from

first census data. D Slenderness is calculated as the slenderness
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census, thus slenderness increased above the dashed lines and it
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e, f), Trichospermum mexicanum (c, d, g, h). Height class:

3.5–4.5 m (a, c, e, g); 4.5–5.5 m (b, d, f, h). Fitted linear

regression lines are included to illustrate trends (P B 0.01 in all

cases). Test statistics on the relationship between neighborhood
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Plant Ecol (2012) 213:25–34 31
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2008). Overall growth in the Vietnam site was much

slower than in our site and the Bolivian site (van

Breugel et al. 2006; Kuijk et al. 2008; Selaya et al.

2008). The intensity and the degree of size-asymmetry

in competition may thus, as hypothesized by Schwin-

ning and Weiner (1998) and Wilson (1999), change

along a gradient of site productivity. To elucidate the

generality and variation of specific processes, such as

competition along gradients of soil fertility, land-use

or precipitation, we will need comparative analyses

that include many more local studies (Keddy 2001).

An increasing number of longitudinal studies in

secondary tropical forests (Chazdon et al. 2007; van

Breugel et al. 2006, 2007; Brienen et al. 2009; Lebrija-

Trejos et al. 2010; Maza-Villalobos et al. 2011;

Norden et al. 2011) hold the promise that such

comparative analyses will soon be possible, and that

the generality of changes in the importance of above-

versus belowground competition along such gradients

will be determined.
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