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Summary

1. The relative contribution of external vs. internal clustering mechanisms for determining commu-

nity structure and its manifestations has been the subject of a continuous debate, but few attempts

have beenmade to examine their single and joint effects in a compound processmodel.

2. In this study, we tested four a priori hypotheses on the relative importance of habitat heterogene-

ity (topography and soil) and internal clustering mechanisms such as dispersal limitation on the spe-

cies–area relationship (SAR) in two fully mapped 25-ha plots of temperate forests in the

Changbaishan (CBS) Nature Reserve, China, and the Chequamegon-Nicolet National Forest in

Wisconsin, USA.

3. We used the distance decay curve to test the generality of the results obtained for the SAR. To

find out if the relative importance of internal and external clustering mechanisms changed with life

stage, we conducted separate analyses for small, large and all trees.

4. Model selection favoured themost complex hypothesis that assumed an influence of both habitat

heterogeneity and internal clustering on SARand the distance decay curve. For the CBS plot, which

shows weak topographical structuring, models were consistent with data only if soil factors were

included into assessment of habitat heterogeneity. At the Wabikon plot, we could not test soil vari-

ables, but inclusion of topographical variables substantially improved the fit of the distance decay

curve.

5. In general, the results of the SAR agreed with those of the distance decay curve, but the latter

was sensitive to positive habitat-mediated species associations. The SAR, but not distance decay,

distinguished among competing hypotheses for the community of large trees at CBS, where species

exhibited only weak clustering.

6. Contrary to our expectations, we did not find substantial differences in the relative importance

of internal and external clusteringmechanisms with life stage.

7. Synthesis. Our analysis of spatial community structure for two relatively diverse temperate for-

ests revealed that the factors governing spatial community structure may not substantially differ

from those in highly diverse tropical forests. This result adds to our understanding of the ecological

processes underlying the spatial diversity structure in natural forest communities.

Key-words: aggregation, Changbaishan, determinants of plant community diversity and

structure, habitat heterogeneity, Possion processes, temperate forest, Thomas processes,

Wabikon

Introduction

The increase in number of species (species richness) with

increasing sampling area is one of the most important attri-

butes of biological communities (Holt et al. 1999; He&Legen-

dre 2002). This pattern, called the species–area relationship

(SAR), quantifies basic aspects of biodiversity in a simple way,

allowing comparisons among different study areas and ecolog-

ical systems. Herein, we focus on tree communities that are

completely mapped within similar-sized (25-ha) study areas.*Correspondence author. E-mail: hzq@iae.ac.cn
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In this case, one can calculate ‘local’ species-area relationships

in which the area of sampling plots (A) within the 25 ha is con-

secutively increased (Connor & McCoy 1979). Although spa-

tial patterns of species richness vary widely among natural

communities, they show basic similarities that suggest general

underlying mechanisms (He & Legendre 2002). Indeed, the

local SAR has played an important role in recent debates

about whether ecological communities are dispersal assembled

or niche assembled, (Hubbell 1997, 2001) because it can be

used to test neutral models (McGill,Maurer &Weiser 2006).

One major factor that influences the shape of the local

SAR is spatial aggregation. If a species is more aggregated

at a given spatial scale, the probability of presence in a ran-

domly selected area (corresponding to this scale) becomes

smaller. Consequently, the SAR values for a given area of

the sampling plots will decrease if more species are aggre-

gated at this scale (Plotkin et al. 2000; He & Legendre 2002;

Tjørve et al. 2008). However, aggregated distribution pat-

terns in species may be broadly attributed to two major, yet

contrasting, factors: (i) external effects of the environment,

such as habitat heterogeneity and (ii) internal processes of

population and community dynamics. One of the most

prominent examples of an internal clustering mechanism is

dispersal limitation (Hubbell 2001) that builds one corner-

stone of neutral theory (Hubbell 2001), but many other fac-

tors such as non-random seed deposition (Howe 1989),

facilitation (Kikvidze et al. 2005), succession (Felinks & Wie-

gand 2007) and gap dynamics (Nagel, Svoboda & Diaci

2006) can contribute to clustered patterns in homogeneous

environments. However, the relative contributions of exter-

nal vs. internal clustering mechanisms for generating patterns

of species richness in real communities are difficult to quan-

tify (Wiegand, Gunatilleke & Gunatilleke 2007a; Wang et al.

2010a). This issue has been the subject of a continuous

debate around the question of whether ecological communi-

ties are dispersal assembled or niche assembled (Hubbell

2001; McGill, Maurer & Weiser 2006), but researchers are

now generally convinced that these assembly mechanisms

are mutually complementary rather than mutually exclusive

(He & Legendre 2002; Shen et al. 2009). However, only a

few investigations have attempted to examine the single and

joint effects of habitat heterogeneity and dispersal limitation

in a compound process model (Shen et al. 2009). New

insight can be expected when comparing results of such anal-

yses among plant communities with contrasting characteris-

tics (e.g. tropical vs. temperate forest) (Wang et al. 2010a,

b).

The theory of spatial point processes (Møller&Waagepeter-

sen 2003; Illian et al. 2008; Waagepetersen & Guan 2009)

offers an opportunity to test if an observed local SAR is pre-

dominantly shaped by habitat heterogeneity and ⁄or by inter-

nal clustering. Habitat models are fitted to the distribution

data of individual species to quantify the influence of environ-

mental factors on the species distribution, and fitting cluster

point process models allows quantifying spatial clustering

without and with consideration of the underlying habitat

model (Shen et al. 2009; Waagepetersen & Guan 2009).

Combination of these elements allows testing of four a priori

hypotheses on single and joint effects of habitat heterogeneity

and internal clustering: (i) random placement (no habitat asso-

ciation, no clustering), (ii) habitat heterogeneity (no internal

clustering), (iii) internal clustering (no habitat association) and

(iv) joint effects of habitat heterogeneity and internal clustering

(Shen et al. 2009). Comparison of the observed SAR with that

of simulated communities corresponding to the different

hypotheses helps identify the hypothesis that is most consistent

with the data.

An important uncertainty of this approach (and tests of

neutral theories in general; McGill, Maurer & Weiser 2006)

is whether the SAR is sensitive enough to separate compet-

ing hypotheses of the underlying mechanisms or not. It has

been suggested that the SAR may have low discriminatory

power in distinguishing between niche assembly and dis-

persal assembly (e.g. Chave 2004; Purves & Pacala 2005),

and McGill, Maurer & Weiser (2006) argued that additional

predictions should be evaluated. One promising alternative

summary statistic of community structure is the decay of

similarity with distance curve (Chave & Leigh 2002; Condit

et al. 2002; Morlon et al. 2008; (McGill 2010). As the dis-

tance decay curve evaluates other aspects of spatial commu-

nity structure than the SAR (Morlon et al. 2008), it is not

clear a priori if both will favour the same hypothesis. For

example, Morlon et al. (2008) showed that one hypothesis

for explaining the structure of three tropical forest communi-

ties yielded accurate predictions for the SAR, but not for all

distance decay curves.

Previous studies have found that species often show

different ecological habitat associations (Webb & Peart 2000;

Comita, Condit & Hubbell 2007) and different degrees of spa-

tial clusteringwith life stage (Wiegand et al. 2007b;Wang et al.

2010b). Do such species-specific variations even out on the

community level or do they result in community-wide shifts in

the relative importance of internal and external clustering with

life stage? For example, strong influence of habitat association

for small trees, but a loss of strong habitat associations for

large (adult) trees could be interpreted as support for neutral

theories in structuring canopy tree communities (e.g. Hubbell

2001).

In this study, we test four a priori hypotheses on the relative

importance of habitat heterogeneity and internal clustering

mechanisms on spatial community structure of two 25-ha fully

mapped plots of temperate forests in the Changbaishan (CBS)

Nature Reserve, north-eastern China and theWabikon plot in

the Chequamegon-Nicolet National Forest of north-eastern

Wisconsin, USA. This analysis allows us to address three spe-

cific objectives. Firstly, we explore the relative importance of

habitat heterogeneity and internal clustering in explaining the

observed SAR. Secondly, we use the distance decay curve as

an additional summary statistic to test the generality of the

results obtained for the SAR. Lastly, we analyse assemblages

of small trees [<10 cm at breast height (d.b.h.) and large trees

(d.b.h. ‡10 cm] separately to explore evidence for shifts in

the relative importance of habitat heterogeneity and internal

clustering with life stage.
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Materials and methods

STUDY AREAS AND FIELD METHODS

Two temperate forest tree communities were chosen for this study.

The first is represented by a 25-ha (500 · 500 m), fully censused tem-

perate forest plot (42�23¢N, 128�05¢E) in the Changbaishan (CBS)

Nature Reserve, north-eastern China. The Reserve, located along the

border of China and North Korea, is one of the largest biosphere

reserves in China and has been spared from logging and other severe

human disturbances.Mean elevation in the CBS temperate forest plot

is 801.5 m a.s.l., and elevation ranges from 791.8 to 809.5 m. All free-

standing trees at least one centimetre in d.b.h. were mapped and

identified to species, and their geographical coordinates were

recorded following a standard field protocol (Condit 1998) by scien-

tists from the Institute of Applied Ecology of the Chinese Academy

of Science. The first census in 2004 yielded 38,902 living individuals

(d.b.h. ‡1 cm) belonging to 52 species, 32 genera and 18 families. The

main tree species included Pinus koraiensis, Tilia amurensis, Quercus

mongolica, Fraxinus mandshurica, Ulmus japonica and Acer mono.

Unlike tropical rain forests without obvious dominant species, eight

species were recorded with more than 1000 individuals, together

accounting for 83.4% of the total individuals in the plot. Mean stand

density was 1556 living trees per hectare. Mean basal area was

43.2 m2 ha)1 (Hao et al. 2008;Wang et al.2009).

The second data set derives from the 25.2-ha (300 · 840 m) Wabi-

kon Forest Dynamics plot (45�33¢N, 88�48¢W) established in 2008 by

scientists at the University of Wisconsin-Green Bay using the same

methods described by Condit (1998). Living trees of at least 1 cm

d.b.h. numbered 48 858, belonging to 36 species, 28 genera and 17

families. TheWabikon plot is located within the Chequamegon-Nico-

let National Forest in north-eastern Wisconsin, USA, c. 10 km east

of Crandon. The glacially formed topography consists of hummocky

outwash features, including an esker running through part of the site.

Elevations range from 488.3 to 514.2 m, with a mean of 498.1 m.

Mesic northern hardwoods occupy most of the plot, dominated by

sugar maple (A. saccharum), basswood (T. americana), white ash

(F. americana) and ironwood ⁄ eastern hop hornbeam (Ostrya virgini-

ana). Like the CBS plot, a relatively small number of species

comprised the majority of individuals; 10 species were represented by

1000 or more individuals, together comprising 95.1% of all live

individuals. The eight most abundant species at the Wabikon plot

represented 90.1% of all individuals. Mean stand density was 1939

living trees per hectare.Mean basal area was 32.0 m2 ha)1.

To examine the effect of habitat heterogeneity on species–area rela-

tionships of the CBS and Wabikon plots, we evaluated three topo-

graphical variables (elevation, slope and aspect) and, for the CBS

plot, eight soil properties (pH, organic matter, total N, total P, total

K and available N, available P and available K). The plots were

divided into grid systems using a 5 · 5 m quadrat size, and the mean

values for these environmental variables (topographical and soil vari-

ables) were then calculated at the 5-m scale using geostatistical meth-

ods. Overall tree density in each quadrat (5 · 5 m) was also

calculated and used as a comprehensive bioenvironmental index for

this analysis.

POINT PATTERN ANALYSIS

We used recent advances in the theory of spatial point processes

(Møller & Waagepetersen 2003; Illian et al. 2008; Waagepetersen &

Guan 2009) to fit corresponding species-specific point process models

for each of the four alternative hypotheses. For each species, we sub-

sequently generated 100 realizations of a fitted point process model

(i.e. simulated distribution patterns) and independent superposition

of the simulated distribution patterns for each hypothesis results in

100 simulated communities. For each simulated community, we cal-

culated SAR and the distance decay curve and compared them with

the observed patterns. The algorithms of the four point processes

have been described in detail by Møller & Waagepetersen (2003),

Illian et al. (2008) and others. Herein, we only summarize the basic

framework of the four processes.

Homogeneous ⁄ inhomogeneous Poisson process

The random placement hypotheses can be represented by a homoge-

nous Poisson process in which the points are: (i) independently scat-

tered and (ii) the intensity k of the process (i.e. the mean point density

in a unit area) is constant (Stoyan & Stoyan 1994). The habitat heter-

ogeneity hypothesis can be represented by an inhomogeneous Poisson

process in which condition: (i) holds, but where the intensity of the

process depends on location x (i.e. the probability k(x)dx of a point

occurring in an infinitesimally small disc of centre x and area dx

depends on location x). The intensity k(x) may be influenced by envi-

ronmental factors. In general, statistical habitat models or species dis-

tribution models (Elith & Leathwick 2009) may be used for

parametric estimation of the intensity function. The most obvious

parametric model to fit the intensity function for a heterogeneous

Poisson process is the loglinear model (Waagepetersen 2007).

Homogeneous ⁄ inhomogeneous Thomas process

Considering the unrealistic independence assumption (i) of the two

Poisson process for real data, two kinds of cluster processes are used

to model clustered spatial distribution patterns. To represent the

internal clustering hypothesis we used the homogeneous Thomas

cluster processes (Thomas 1949). It generates a number of randomly

and independently distributed clusters, where the cluster centres fol-

low a homogeneous Poisson process with intensity q, and the number

of points per cluster follows a Poisson distribution with mean

l = k ⁄ q. The location of the points in a given cluster, relative to the

cluster centre, has a bivariate Gaussian distribution with variance r2

(Stoyan & Stoyan 1994). The K-function of the Thomas process can

be calculated analytically (Stoyan & Stoyan 1994; Wiegand et al.

2007b), which allows fitting the parameters of this process to the data

for each species. Realizations of the fitted process can be easily simu-

lated (Stoyan & Stoyan 1994). Note that fitting a Thomas process to

an inhomogeneous pattern may formally produce a good fit. Thus,

some of the effects of environmental heterogeneity may already be

accounted for by a homogeneous Thomas process.

The inhomogeneous Thomas process represents the most complex

hypothesis, where habitat heterogeneity and internal clustering occur

simultaneously. The inhomogeneous Thomas process results from

thinning a homogeneous Thomas process with intensity function k(x)
(Waagepetersen 2007). If k(x) is known, the parameters of the corre-

sponding homogeneous Thomas process can be fitted using the inho-

mogeneous K-function (Baddeley, Møller & Waagepetersen 2000;

Waagepetersen 2007). This process provides a simple phenomenolog-

ical description of clustering that explicitly includes the effect of envi-

ronmental heterogeneity.

Model fitting

We used a two-step approach proposed by Waagepetersen & Guan

(2009) to estimate the parameters of our four point processes. There
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are basically two sets of parameters: regression parameters for the dif-

ferent covariates to estimate intensity functions k(x) (inhomogeneous

Poisson and inhomogeneous Thomas process) and the clustering

parameters q and r of the homogeneous and inhomogeneous Tho-

mas process. We used minimum contrast estimation to estimate the

clustering parameters (Stoyan & Stoyan 1994). A Poisson likelihood

function corresponding to the proposed intensity function was maxi-

mized to estimate the regression parameters both in case of the inho-

mogeneous Poisson process and the inhomogeneous Thomas

process. Although this is not a maximum likelihood estimation, one

can show that the estimated regression parameters are still consistent

and asymptotically normal (Waagepetersen 2007; Waagepetersen &

Guan 2009).

We used the soil variables together with three topographical

parameters and the bioenvironmental index (total tree density in a

5 · 5 m quadrat) as environmental variables to determine the inten-

sity function k(x). To reduce the risk of over-fitting, we computed

the principal components (PCs) from the eight soil variables and

used only the first two components as condensed variables because

together they explained 97.2% of total variance in soil variables

(John et al. 2007). The intensity function is then fitted using maxi-

mum likelihood estimation to models of the loglinear form

kðxÞ ¼ expðb0 þ b1m1ðxÞ þ :::þ bnmnðxÞÞ with coefficients bi and the

variables mi(x). At CBS we have n = 6 variables and at Wabikon

n = 4 variables. To account for the problem (common to both inho-

mogeneous Poisson and inhomogeneous Thomas processes) that

some random variation is bound to be picked up by covariates even

though these covariates in reality do not influence the spatial pattern

of trees, we performed stepwise model reduction using Wald-tests

(Waagepetersen&Guan 2009). Otherwise, toomuch variation would

be attributed to the covariates.

Model selection

We generated, for each hypothesis, 100 communities by superpos-

ing realizations of the fitted point process models for each species.

The species–area relationships were constructed by randomly

throwing quadrats with increasing sizes in these simulated commu-

nities (Shen et al. 2009). To calculate the distance decay curve, we

divided the plot into 20 · 20 m quadrats and calculated the similar-

ity among these quadrats using the Jaccard index of similarity

(Legendre & Legendre 1998). The predicted summary statistics (i.e.

SAR and distance decay curve) for the four models were computed

by averaging the simulated patterns of 100 simulated communities,

and 95% simulation envelopes were constructed for each predicted

summary statistic.

Finally, the observed summary statistics from the original data

obtained in the CBS and Wabikon plots were compared with the

summary statistics predicted by the four point process models. A

model is considered satisfying, if the observed summary statistic falls

within the simulation envelopes of the predicted summary statistic.

To select the hypothesis that received most support from the data, we

used a type of Akaike’s Information Criterion (AIC) in which the log

likelihood was approximated by the sum of squared residuals for

either the SAR or the distance decay summary statistics (Webster &

McBratney 1989; Shen et al. 2009). Due to the stepwise model reduc-

tion used for estimation of the intensity function, the number of

parameters for the inhomogeneous Poisson and Thomas process may

differ among species. However, as we calculated the AIC on the com-

munity level (superposing realizations of the point process models for

individual species), we counted all covariates that were used at a given

site andmodel at least once.

In addition, we illustrated the observed and simulated spatial distri-

bution maps ofU. japonica in the CBS plot. The distribution function

G(r) of the nearest-neighbour distances rwas then calculated for each

simulated distribution pattern to evaluate the goodness of fit of each

model (Ripley 1988; Møller &Waagepetersen 2003). All calculations

were carried out in R version 2.10.0 (R Development Core Team

2009), using the ‘spatstat’ package (Baddeley &Turner 2005).

Results

SMALL AND LARGE TREES TOGETHER

The species–area pattern in the two temperate forest plots

(CBS andWabikon) showed a similarly increasing tendency of

species richness with increased sampling area (Figs 1a and 2a)

although the final increase at areas larger than 12 hawas some-

what steeper at Wabikon. Note that all four hypotheses pro-

vide seemingly accurate results near the two ends of the

species–area relationships, i.e. near 0 and 25 ha in the CBS plot

or 0 and 25.2 ha in the Wabikon plot. However, this was an

artefact because the total species richness and plot area were

fixed regardless of whatmodels were applied.

The observed distribution of U. japonica at the CBS plot

(Fig. 3e) together with realizations of the different point pro-

cess models (Fig. 3a–d) illustrates a typical result (see Fig. S1

Supporting Information). It is clear from visualization of the

patterns that the two point processes without internal cluster-

ing (i.e. hypothesis i and ii; Fig. 3a,b) miss important aspects

of the observed spatial structure. The homogenous Thomas

process (i.e. hypothesis iii) reproduces the small-scale cluster-

ing better (Fig. 3c); however, it produces unrealistically large

gaps and does not effectively reproduce the spatial variation in

tree density. The realization of the inhomogeneous Thomas

process with soil factors (hypothesis iv; Fig. 3d) overcomes the

shortcomings of the homogeneous Thomas process, and pro-

duced patterns that agreed well with the observed distribution

ofU. japonica.

The above observations for a single species generally hold

for the entire communities. In most cases, the SARwas able to

distinguish among the four hypotheses. Hypotheses i and ii

were clearly rejected both on the basis of the simulation enve-

lopes (Figs 1b and 2b) and on the basis of formal model selec-

tion using AIC (Table 1). Both hypotheses tended to

considerably overestimate species richness. Interestingly, when

soil variables were not considered, hypothesis iii (i.e. the inter-

nal clustering hypothesis) received the most support for both

plots (Table 1), but yielded not fully satisfying fits (Figs 1b

and 2b). The more complex model for the Wabikon forest

(hypothesis iv) received almost the same support as model iii

(DAIC = 3.4), but internal clustering (hypothesis iii) slightly

underestimated species richness at larger areas (>7 ha)

whereas consideration of the joined effect of internal clustering

and habitat association (hypothesis iv) slightly overestimated

species richness (Fig. 2b). Inclusion of the two soil variables

into hypothesis iv for the CBS plot produced an excellent fit of

the observed SAR (Fig. 1b) and was clearly the most parsimo-

niousmodel (Table 1).
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Additional insight in the ability of the four hypotheses to

explain spatial community structure is provided by the

distance decay curve (Fig. 4; Table 1). In agreement with

results of the SAR analyses, all hypotheses that did not

include internal clustering (i.e. i, ii) failed notably and pro-

duced far too high similarity values (Fig. 4a,b). However, in

contrast to the SAR results, the support for hypothesis iv over

hypothesis iii was unambiguous for the distance decay curve,

both for the simulation envelopes (Fig. 4a,b) and for AIC

(Table 1). At small distances (i.e. <300 m), the predictions

for the CBS plot were very close to the observations, but for

larger distances the corresponding point process models

slightly overestimated similarity (Fig. 4a). Interestingly,

hypothesis iv with and without soil factors received the same

support (DAIC<2; Table 1). The predictions of hypothesis iii

(only internal clustering) overestimate similarity at the CBS

plot at 20 m and underestimate similarity at distances between

60 and 200 m (Fig. 4a). The failure of hypothesis iii to fit the

distance decay curve is evident at the Wabikon plot, where it

severely underestimated similarity at all distances except 20 m

(Fig. 4b). However, inclusion of environmental heterogeneity

(hypothesis iv) provided a much butter, albeit not fully satisfy-

ing, fit. Thus, the distance decay curve shows that environ-

mental heterogeneity must be considered together with

internal clustering.

SMALL VS. LARGE TREES

As most trees were small, the total number of species of

small trees (49 at CBS and 33 at Wabikon) was similar to the

total number of species for all trees (52 and CBS and 36 at

Wabikon), but the number of species of large trees at both
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Fig. 1. The observed (dots) and predicted (coloured lines) species–area relationships for the data from the CBS plot. Small and large trees

together (a, b), only for large trees (‡10 cm d.b.h.; c, d), and only for small trees (<10 cmd.b.h.; e, f). The left column (a, c, e) shows species abso-

lute richness, whereas the right column shows the relative species richness (i.e. observed – predicted) for the different hypotheses. The vertical bars

are the 95% simulation envelopes arising from simulation of the point process models. Hompo, homogeneous Poisson process; Inhompo.top,

inhomogeneous Poisson process without soil factors; Inhompo.env, inhomogeneous Poisson process with soil factors; Inhomth.top, inhomoge-

neous Thomas process without soil factors, Inhomth.env: Inhomogeneous Thomas process with soil factors.
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plots was substantially lower (34 at CBS and 23 at Wabikon).

Unsurprisingly, the SAR results obtained for separate analysis

of small trees did not differ substantially from those obtained

for all trees together (Figs 1 and 2).

Separate analyses of the distance decay function for small

and large trees generally supported the results of the analysis

for all trees; hypothesis iv was selected in all cases. Again,

hypothesis iv with and without soil factors received the same

support for separate analysis of small and large trees at the

CBS plot (DAIC <2; Table 1). However, some differences in

detail are evident for large trees. At the CBS plot hypotheses ii,

iii and iv received similar support for the distance decay

(Fig. 4c; Table 1), which means that large trees were relatively

less clustered at this plot. This is also evident from the pre-

dicted distance decay curves which showed little differences

among the four hypotheses (Fig. 4c), whereas the predicted dis-

tance decay curves of all trees and small trees differed widely

among the four hypotheses (Fig. 4a, e). However, at theWabi-

kon plot, the distance decay of large trees at smaller distances

(<150 m) was poorly simulated by all four hypotheses

(Fig. 4d), although hypothesis iv yielded accurate SAR predic-

tions for large trees (Fig. 2d).

ENVIRONMENTAL VARIABLES

When analysing small and large individuals together, we found

that 61% and 64% of all species distribution patterns at the

CBS and Wabikon plots, respectively, showed a significant

relationship with environmental variables (i.e. they show a

habitat association; see Table S1 Supporting Information).

For large trees, these figures dropped to 33% and 42% respec-

tively. This is probably a consequence of smaller statistical

power due to the smaller number of larger trees.

At the CBS plot, approximately half of all habitat models

for all trees yielded only one significant environmental variable

(Table S2), but this was true for only 9% of the habitat models

at the Wabikon plot. In general, the abiotic variables were

more frequently selected atWabikon for all trees (elevation: 19
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Fig. 2. The observed (dots) and predicted (coloured lines) species–area relationships for the data from the Wabikon plot. Conventions as in

Fig. 1.
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of 23 species, slope: 7 ⁄23, aspect: 9 ⁄23) compared with the

CBS plot (elevation: 7 ⁄32, slope: 5 ⁄32, aspect: 3 ⁄32, PCA1:

9 ⁄32, PCA2: 12 ⁄32). As expected, the coefficients for analyses

with all individuals were in close accordance with those for

small individuals, but coefficients for large trees were often

quite different (Tables S2 and S3).

Discussion

Our results have shown that the combined effects of habi-

tat heterogeneity (including soil factors) and internal clus-

tering lead to good approximations of the observed

species–area relationships and distance decay curves in two

representative temperate forests, one in north-eastern China

and the other in north-central United States. The species–

area relationship proved to be a sensitive summary statistic

that can detect subtle differences among competing point

process models and yielded results that, in general, agreed

with those of the distance decay curve. Contrary to our

expectations, the most complex model including habitat

association and internal clustering received, in most cases,

the most support. Thus, we did not find substantial differ-

ences in the relative importance of habitat association and

internal clustering with life stage (this would be given if

different models would be selected for different life stages).

Exceptions were the SAR of small trees at Wabikon,

where the homogeneous Thomas process was clearly

favoured and two cases (SAR of all trees at Wabikon and

distance decay for all trees at CBS) where several models

including the most complex one received similar support

(Table 1). Comparison of our results from these two rela-

tively diverse temperate forests with spatial patterns of

trees in highly diverse tropical and subtropical forests

suggests that community structure may be governed by the

same underlying mechanisms.

RELATIVE IMPORTANCE OF INTERNAL AND EXTERNAL

AGGREGATION MECHANISMS

In our analyses, the random placement hypothesis yielded the

poorest model for predicting spatial community structure. In

particular, this model overestimated species richness for most

of the sampling range and did not account for the observed

decline in similarity with distance. This result is consistent with

previous studies that have identified spatial clustering as the

dominant pattern of species from temperate forests to tropical

forests (He, Legendre & LaFrankie 1997; Condit et al. 2000;

Morlon et al. 2008; Wang et al. 2010b). However, the random

placement hypothesis performed relatively well at the CBS

plot and for the analysis of all trees yielded amaximal overesti-

mation of species richness of c. 28% at the 0.9-ha area: (36 spe-

cies were predicted and 28 observed). At Wabikon, the

maximal overestimation yielded 64% at the 0.6-ha area (23

species were predicted and 14 observed). This result and the

steeper increase of the SAR for larger areas at Wabikon sug-

gests that the CBS plot shows a better mixing of species within

the plot compared with the Wabikon plot. Indeed, some spe-

cies at the Wabikon plot show very patchy distribution pat-

terns that result in hotspots of species richness (and number of

individuals), related in part to the elevation pattern (Fig. S2).

These trends are much weaker at the CBS forest (Fig. S3).

Consequently, the consideration of habitat heterogeneity (i.e.

hypothesis ii) improved the SAR prediction at Wabikon con-

siderably (the maximum error dropped from nine to four spe-

cies), but only moderately at the CBS plot. The Wabikon plot

experienced localized logging during the 1900s, as evidenced

by historical records and air photos dating to 1938. These dis-

turbances, in addition to pronounced variation in elevation,

have contributed to spatial heterogeneity of trees in parts of

the plot. Nevertheless, we found for analyses of all trees that

the distribution pattern of approximately two-thirds of all

Table 1. Comparison of Akaike’s Information Criterion (AIC) among the four process models for the different analyses and forest plots

Poisson process Thomas process

Homogeneous

random placement

Inhomogeneous habitat

heterogeneity

Homogeneous internal

clustering

Inhomogeneous

habitat heterogeneity

and internal clustering

SAR

All CBS 260.9 229.2#, 212.1$ 117.8 136.2#, 94.7

Wabikon 288.1 210.9 152.3 155.7

Large CBS 221.1 183.4#, 144.9$ 139.4 145.8#, 82.5$

Wabikon 242.2 160.7 79.9 18.9

Small CBS 257.2 211.7#, 182.1$ 81.6 109.6#, 45.4$

Wabikon 288.4 228.2 110.6 159.2

Distance decay curve

All CBS 153.4 112.8#, 107.8$ 44.0 41.1#, 39.1

Wabikon 171.9 140..7 95.7 40.0

Large CBS 34.1 11.6#, 9.1$ 9.4 11.2#, 11.1$

Wabikon 51.5 39.4 26.8 18.2

Small CBS 95.5 62.9#, 58.3$ 17.1 15.2#, 14.5$

Wabikon 115.3 89.2 22.6 17.7

#, without soil data, $, with soil data.
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species showed a significant relationship with environmental

variables (Table S1). Thus, habitat heterogeneity cannot be

neglected at our two study plots, but it is not sufficient to pro-

duce the observed patterns in SAR and distance decay. This

result suggests a need to consider additional clustering mecha-

nisms.

Recently, both theoretical and empirical studies have

emphasized the importance of dispersal limitation in control-

ling species distributions (Condit et al. 2002; Seidler &

Plotkin 2006; Wiegand, Martinez & Huth 2009). However,

the effect of dispersal limitation on spatial patterns is rarely

straightforward and many other biological interactions and

processes (other than habitat association) may contribute to

the spatial pattern of a species. Seidler & Plotkin (2006)

found that the extent and scale of conspecific spatial cluster-

ing in the 50-ha Pasoh Forest Plot was correlated with the

mode of seed dispersal. Thus, dispersal limitation is likely to

leave a signal on the species clustering process and thus on

species–area patterns and distance decay curves. Our results

indicate that homogeneous Thomas processes mimicking the

spatial clustering of species (i.e. hypothesis iii) reproduce the

SAR fairly well (see also Plotkin et al. 2000; Morlon et al.

2008), but failed in reproducing observed distance decay

curves. This is because the homogeneous Thomas process

can produce good fits to aggregation caused by environmen-

tal heterogeneity, but it cannot describe positive dependency

in the distribution pattern among species mediated by habitat

association. As a consequence, it produces communities
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Fig. 3. The observed distribution ofUlmus japonica in the CBS plot and its distribution generated from the homogeneous Poisson process, inho-

mogeneous Poisson process with soil factors, homogeneous Thomas process and inhomogeneous Thomas process with soil factors.
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that are too well mixed (i.e. similarity decays too quickly;

Fig. 4a,b). However, the inhomogeneous Thomas process

(hypothesis iv), which places clusters only at suitable areas,

can generate the positive association among species necessary

to produce the observed decay in similarity with distance. In

particular, the inhomogeneous Thomas process is able to

account for the patchy diversity hotspots at Wabikon forest.

In other words, this model is better able to simulate spatial

patterns for communities that show strong spatial structuring

(Figs S2 and S3). Thus, at the local spatial scale studied

here, both habitat association and internal clustering are

required to explain the observed patterns in spatial commu-

nity structure.

Our results on the relative importance of internal vs. exter-

nal aggregation mechanisms agree with the findings of Shen

et al. (2009) and Morlon et al. (2008) for highly diverse sub-

tropical and tropical forests. This is a further indication that

the effects of the environment and internal clustering mecha-

nisms contribute in a complementary way to the assembly of

species rich communities (He & Legendre 2002; Shen et al.

2009).

However, it is important to emphasize that species–area pat-

terns are dramatically dependent on spatial scales (Palmer &

White 1994; Whittaker, Willis & Field 2001). Our study was

confined to the local community scale, where habitat types

usually do not change dramatically, but rather more gradually

(as depicted by the habitat models for the intensity function).

Beyond the local scale, however, the relative effects of different

processes may change. For example, dispersal limitation may

have a dominant effect on the species–area relationships at the

local community scale, whereas habitat heterogeneity may

become more pronounced at the regional scale (Kallimanis

et al. 2008).

SAR VS. DISTANCE DECAY CURVE

Our results support the analysis of more than one

summary statistic for understanding spatial patterns of

Distance d (m) Distance d (m) 

CBS-all 

CBS-large 

CBS-small 

Wabikon-all 

Wabikon-large 

Wabikon-small 

(a) (b)

(c) (d)

(e) (f)

Fig. 4. The observed (dots) and predicted (coloured lines) decay of similarity with distance curve for the CBS and theWabikon plot. We used the

Jaccard index to quantify the similarity of 20 · 20 m quadrats that were distance d away. Colour conventions as in Fig. 1.
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community structure (McGill, Maurer & Weiser 2006). In

general, the distance decay curve supported the results

found for the SAR, but there was a somewhat curious

reversal of the AIC model ranking between the CBS and

Wabikon plots (Table 1). At the Wabikon plot, the dis-

tance decay curve favoured for all trees and small trees

the more complex model iv that included the influence of

both habitat association and internal clustering, whereas

the SAR favoured the simpler model iii that included inter-

nal clustering only (although the AIC difference for all trees

was small). At the CBS plot, the distance decay curve could

not discriminate between models with or without habitat

associations, whereas the SAR clearly favoured the more

complex model iv with soil variables included. The distance

decay curve of hypothesis iii for all trees at Wabikon

(Fig. 4b) clearly underestimated similarity, but this discrep-

ancy was only slight at CBS (Fig. 4a). As discussed above,

this may be due to the inability of hypothesis iii to generate

positive associations among species caused by shared habi-

tats. Consequently, hypothesis iv, which included habitat

association, improved the fit of the distance decay curve at

Wabikon considerably. This effect is also visible at the CBS

plot, but habitat associations appear to be weaker and influ-

ential over a smaller range of distances (100–200 m). Thus,

the distance decay curve proved to be sensitive to violation

of the independence assumption of hypothesis iii due to hab-

itat association, but the SAR was not as sensitive. This

important result shows that the independence assumption

underlying most theories of stochastic geometry of biodiver-

sity (McGill 2010) may indeed not be valid. If local diversity

is patchy with marked diversity hotspots as shown by the

Wabikon plot, positive association among species (mediated

by habitat heterogeneity) is required to account for the

observed distance decay curve. The CBS plot, however, was

more strongly characterized by interspecific segregation pat-

terns (Wang et al. 2010a) that resulted in a more even distri-

bution of local diversity. Consequently, the error of not

considering habitat heterogeneity was less severe for the dis-

tance decay curve.

The distance decay curve was not always able to distin-

guish among competing hypotheses. For example, the dis-

tance decay curve for large trees at the CBS plot was not

able to distinguish among hypotheses ii, iii and iv with and

without soil factors (Table 1), unlike the SAR. The reason

for this is probably that the community of large trees at

CBS was only weakly clustered, an attribute for which the

distance decay curve is especially sensitive. Morlon et al.

(2008) have demonstrated that distance decay is closely

related to the pair correlation function, which describes

details of clustering of individual species (Wiegand, Marti-

nez & Huth 2009), whereas the SAR is related to the spher-

ical contact distribution HS(r), the probability that there is

no tree of species i within distance r from the centre of a

circular sampling plot with radius r (Illian et al. 2008). Note

that the spherical contact distribution basically describes the

empty space between the clusters (Illian et al. 2008), and is

therefore less sensitive to details of smaller-scale clustering

as long as a simplified point process model represents the

gaps.

ENVIRONMENTAL VARIABLES

Our analysis revealed some interesting differences between

temperate forests and species rich tropical and subtropical for-

ests (Shen et al. 2009). For example, we found that, without

including soil factors, consideration of environmental hetero-

geneity did not improve the predicted SAR based on internal

clustering, unlike the results of Shen et al. (2009) for the tropi-

cal forest plot on Barro Colorado Island (BCI). Interestingly,

this result applies to a separate analysis of small and large tree

communities. Thus, soil factors may have a stronger effect on

species–area patterns in the CBS forests compared with the

BCI plot. The flat topography of the CBS plot (elevation varies

only 18 m; Wang et al. 2008) may explain the weak impact of

topographical variables compared with that at BCI, where ele-

vationwithin the plot varies 40 m.

The stronger effect of topography at BCI could also be

related to the specific hydrological conditions, where slopes are

wetter than plateaus and experienced a shorter drought during

the dry season (Daws et al. 2002; Leigh et al. 2004). In addi-

tion, it should be emphasized that we interpreted the effect of

soil factors on these spatial patterns as directional responses of

species to variations in soil properties in the study. However,

tree species in forests may both affect and respond to soil prop-

erties through litterfall inputs and effects onmicrobial commu-

nities and decomposition rates, etc. (Boerner & Koslowsky

1989; Finzi, Canham & Van Breemen 1998). In other words,

soil variables are not necessarily abiotic factors generated by

processes extrinsic to population and community dynamics.

Although some studies have argued that biotic feedback effects

are less likely to influence spatial variation in soil nutrient

availability in species rich tropical forests (Powers, Kalicin &

Newman 2004), their influence on soils in temperate forests is

still poorly known.

At both of our temperate forest plots, the intensity function

for most species was positively related with the bioenviron-

mental index (overall tree density in each 5 · 5 m quadrat;

Tables S2 and S3). This suggests that some environmental con-

straint, common for most species, was not captured by the

environmental variables used in our analysis.

SIMPLIF ICATIONS OF THE APPROACH

The point process models that combined habitat heterogeneity

and internal clustering provided relatively good, but not always

perfect, fits to the SAR. This is to a large extent due to the

power of the Thomas processes to represent clustering (see also

Plotkin et al. 2000; Morlon et al. 2008). However, the predic-

tions for the distance decay curvemay be improved using point

process models that are able to capture more complex distribu-

tion patterns and underlying processes. For example,Wiegand

et al. (2007b); Wiegand, Martinez and Huth (2009) showed

that species may often cluster at several critical scales. Consid-

eration of only one scale of clustering did not severely reduce
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the power of our point processmodels to describe the observed

spatial community structure. However, the analysis ofMorlon

et al. (2008) for the tropical forest at the Korup National Park

(Cameroon) showed that hypothesis iii overestimated similar-

ity, which is the opposite of our results. They attributed this to

the inability of the Thomas process to describe the complex

multi-clustered spatial patterns at this plot (Morlon et al.

2008). The fit with the homogeneous Thomas process probably

captured only the larger scale of clustering and produced pat-

terns that lacked the small-scale clustering necessary for pro-

ducing lower similarities among subplots.

An interesting result of our study is that the assumption of

independence among the patterns of individual species led to a

good fit of models with the observed species–area patterns

(Plotkin et al. 2000). Herein, we found that inclusion of posi-

tive, habitat-mediated species associations were important to

fit the distance decay curve (but not SAR) at the Wabikon

plot, where diversity hotspots are present. The segregation pat-

terns that dominated the intraspecific species relationships of

larger trees (>10 cm d.b.h.) at the CBS plot (Wang et al.

2010a) are probably also produced by the impact of environ-

mental heterogeneity, because the point process model that

assumed homogeneous clustering (without habitat heterogene-

ity) failed to reproduce both the SAR and the distance decay

curve. However, intraspecific interactions of large trees that

were detected for 1 ⁄3 of all pairs of large species at the CBS

plot (after removing large-scale habitat effects; Wang et al.

2010a) cancelled out and did not compromise the fit of the

SAR and the species decay curve. Thus, smaller-scale species

interactions may not be major factors structuring spatial com-

munity structure.

Finally, the point process models used here are static, and

do not incorporate the effects of temporal processes or site his-

tory (Ripley 1988; Plotkin et al. 2000; Møller & Waagepeter-

sen 2003). In all, more sophisticated dynamic models are

required to further explain the underlyingmechanisms control-

ling the relationship between species richness and sampling

area at these spatial scales.
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